Clamping effects on the performance of proton exchange membrane fuel cell

被引:1
作者
Yilgin, Busra [1 ]
Celik, Cenk [1 ]
San, Fatma Gul Boyaci [2 ]
机构
[1] Kocaeli Univ, Mech Engn Dept, TR-41380 Kocaeli, Turkiye
[2] TUBITAK Marmara Res Ctr, Energy Inst, TR-41470 Gebze, Kocaeli, Turkiye
关键词
End plate; Fuel cell; Response surface methodology; Optimization; PRESSURE DISTRIBUTION; CONTACT RESISTANCE; OPTIMIZATION; COMPRESSION; PARAMETERS; PREDICTION; FORCE; FLOW;
D O I
10.1016/j.ijhydene.2024.12.015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The endplate is a critical component of a proton exchange membrane fuel cell (PEMFC) that significantly influences its performance. This study investigated the effects of various endplate parameters on PEMFC performance by examining the bolt distribution (4a, 8a, 8b), clamping torque (1, 5, and 9 Nm), and end-plate material (Delrin, aluminum, and stainless steel). Response surface methodology (RSM) was employed to optimize these parameters, with the aim of maximum paper-pressure compression ratio to achieve optimal performance. Additionally, a software was developed in CANVA to analyze the paper-pressure compression ratio using numerical data. The results indicated that applying the maximum torque to a stainless-steel endplate with the 8b bolt placement leads to the most homogeneous pressure distribution within the cell. Our findings highlight that optimizing endplate parameters leads to a more efficient design and enhances PEMFC performance.
引用
收藏
页码:888 / 895
页数:8
相关论文
共 26 条
[11]   Complex mechanisms of PEMFC performance variations influenced by both structural deformation and contact resistance under the clamping force [J].
Jing, Guoxi ;
Hu, Chengbo ;
Qin, Yanzhou ;
Sun, Xiuxiu ;
Ma, Teng .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 58 :137-148
[12]   Analyses of the fuel cell stack assembly pressure [J].
Lee, SJ ;
Hsu, CD ;
Huang, CH .
JOURNAL OF POWER SOURCES, 2005, 145 (02) :353-361
[13]   The effects of compression and gas diffusion layers on the performance of a PEM fuel cell [J].
Lee, WK ;
Ho, CH ;
Van Zee, JW ;
Murthy, M .
JOURNAL OF POWER SOURCES, 1999, 84 (01) :45-51
[14]   A study of the effect of compression on the performance of polymer electrolyte fuel cells using electrochemical impedance spectroscopy and dimensional change analysis [J].
Mason, Thomas J. ;
Millichamp, Jason ;
Shearing, Paul R. ;
Brett, Daniel J. L. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (18) :7414-7422
[15]   Optimization of parameters for hot-pressing manufacture of membrane electrode assembly for PEM (polymer electrolyte membrane fuel cells) fuel cell [J].
Okur, Osman ;
Karadag, Cigdem Iyigun ;
San, Fatma Gul Boyaci ;
Okumus, Emin ;
Behmenyar, Gamze .
ENERGY, 2013, 57 :574-580
[16]   Performance analysis of a transparent PEM fuel cell at the optimized clamping pressure applied on its bolts [J].
Rao, S. S. L. ;
Shaija, A. ;
Jayaraj, S. .
MATERIALS TODAY-PROCEEDINGS, 2018, 5 (01) :58-65
[17]  
Reji M., 2022, INDIAN J MICROBIOL R, V9, P241, DOI [10.18231/j.ijmr.2022.042, DOI 10.18231/J.IJMR.2022.042]
[18]   The effect of compression molding parameters on the electrical and physical properties of polymer composite bipolar plates [J].
San, Fatma Gul Boyaci ;
Okur, Osman .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (36) :23054-23069
[19]  
Stambouli AB, 2002, RENEW SUST ENERG REV, V6, P295, DOI 10.1016/S1364-0321(01)00015-6
[20]   Experimental study of clamping effects on the performances of a single proton exchange membrane fuel cell and a 10-cell stack [J].
Wen, Chih-Yung ;
Lin, Yu-Sheng ;
Lu, Chien-Heng .
JOURNAL OF POWER SOURCES, 2009, 192 (02) :475-485