Signless Laplacian spectral radius for a k-extendable graph

被引:2
作者
Zhou, Sizhong [1 ]
Zhang, Yuli [2 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Sci, Zhenjiang 212100, Jiangsu, Peoples R China
[2] Dalian Jiaotong Univ, Sch Sci, Dalian 116028, Liaoning, Peoples R China
关键词
signless Laplacian spectral radius; perfect matching; extendable graph; MATCHING EXTENSION; ISOLATED TOUGHNESS; BINDING NUMBER; PATH-FACTORS; EXISTENCE;
D O I
10.2298/FIL2502649Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let k and n be two nonnegative integers with n equivalent to 0 (mod 2), and let G be a graph of order n with a perfect matching. Then G is said to be k-extendable for 0 <= k <= n-2/2 if every matching in G of size k can be extended to a perfect matching. In this paper, we first establish a lower bound on the signless Laplacian spectral radius of G to ensure that G is k-extendable. Then we create some extremal graphs to claim that all the bounds derived in this article are sharp.
引用
收藏
页码:649 / 657
页数:9
相关论文
共 51 条
[1]   Matching extension and minimum degree [J].
Ananchuen, N ;
Caccetta, L .
DISCRETE MATHEMATICS, 1997, 170 (1-3) :1-13
[2]  
Ananchuen N., 1995, Australas. J. Combin., V12, P59
[3]  
ANDERSON I, 1972, P EDINBURGH MATH SOC, V18, P131
[4]  
Anderson I., 1971, J. Combin. Theory Ser. B, V10, P183, DOI DOI 10.1016/0095-8956(71)90041-4
[5]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[6]   BINDING NUMBER AND TOUGHNESS FOR MATCHING EXTENSION [J].
CHEN, CP .
DISCRETE MATHEMATICS, 1995, 146 (1-3) :303-306
[7]  
Cioaba SM, 2014, ELECTRON J COMB, V21
[8]   Max-cut and extendability of matchings in distance-regular graphs [J].
Cioaba, Sebastian M. ;
Koolen, Jack ;
Li, Weiqiang .
EUROPEAN JOURNAL OF COMBINATORICS, 2017, 62 :232-244
[9]   TOWARDS A SPECTRAL THEORY OF GRAPHS BASED ON THE SIGNLESS LAPLACIAN, I [J].
Cvetkovic, Dragos ;
Simic, Slobodan K. .
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2009, 85 (99) :19-33
[10]   Degree sum conditions for path-factor uniform graphs [J].
Dai, Guowei .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (04) :1409-1415