Thermodynamics of Schwarzschild-AdS black hole in non-commutative geometry

被引:1
作者
Wang, Rui-Bo [1 ]
Ma, Shi-Jie [1 ]
You, Lei [1 ]
Deng, Jian-Bo [1 ]
Hu, Xian-Ru [1 ]
机构
[1] Lanzhou Univ, Lanzhou Ctr Theoret Phys, Key Lab Theoret Phys Gansu Prov, Lanzhou 730000, Peoples R China
关键词
non-commutative geometry; Lorentzian distribution; black hole thermodynamics; P-v criticality; Joule-Thomson expansion; JOULE-THOMSON EXPANSION; PHASE-TRANSITION; GRAVITY; SPACETIME;
D O I
10.1088/1674-1137/adbacd
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
In this paper, we study the thermodynamics of Schwarzschild-anti-de Sitter black holes within the framework of non-commutative geometry. By solving the Einstein equation, we derive the corrected Schwarzschild-AdS black hole with Lorentzian distribution and analyze the thermodynamics. Our results confirm that if the energy-momentum tensor outside the event horizon is related to the mass of the black hole, the conventional first law of thermodynamics will be violated. The study of criticality reveals that the black hole undergoes a small black hole-large black hole phase transition similar to that of the Van der Waals system, with a critical point and critical ratio slightly smaller than that of the Van der Waals fluid. As the non-commutative parameter increases, the phase transition process shortens, leading to a critical point, and ultimately to the disappearance of the phase transition. The violation of the conventional first law results in a discontinuity of the Gibbs free energy during the phase transition, indicating the occurrence of zeroth-order phase transition. Moreover, we investigate the Joule-Thomson expansion, obtaining the minimum inversion temperature and minimum inversion mass.
引用
收藏
页数:12
相关论文
共 66 条
[1]  
Araújo AA, 2024, Arxiv, DOI arXiv:2406.12015
[2]   A gravity theory on noncommultative spaces [J].
Aschieri, P ;
Blohmann, C ;
Dimitrijevi, M ;
Meyer, F ;
Schupp, P ;
Wess, J .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (17) :3511-3532
[3]  
Baaski S., 1990, Gen. Relativ. Gravit, V22, P379, DOI [10.1007/BF00756146, DOI 10.1007/BF00756146]
[4]   Noncommutative black hole thermodynamics [J].
Banerjee, Rabin ;
Majhi, Bibhas Ranjan ;
Samanta, Saurav .
PHYSICAL REVIEW D, 2008, 77 (12)
[5]   Joule-Thomson expansion of Born-Infeld AdS black holes [J].
Bi, Shihao ;
Du, Minghao ;
Tao, Jun ;
Yao, Feiyu .
CHINESE PHYSICS C, 2021, 45 (02)
[6]   Noncommutative general relativity [J].
Calmet, X ;
Kobakhidze, A .
PHYSICAL REVIEW D, 2005, 72 (04) :1-5
[7]   Second order noncommutative corrections to gravity [J].
Calmet, Xavier ;
Kobakhidze, Archil .
PHYSICAL REVIEW D, 2006, 74 (04)
[8]   Quasinormal modes and shadow of noncommutative black hole [J].
Campos, J. A., V ;
Anacleto, M. A. ;
Brito, F. A. ;
Passos, E. .
SCIENTIFIC REPORTS, 2022, 12 (01)
[9]   On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT [J].
Chaichian, M ;
Kulish, PP ;
Nishijima, K ;
Tureanu, A .
PHYSICS LETTERS B, 2004, 604 (1-2) :98-102
[10]   Charged AdS black holes and catastrophic holography [J].
Chamblin, A ;
Emparan, R ;
Johnson, CV ;
Myers, RC .
PHYSICAL REVIEW D, 1999, 60 (06)