META-TRANSFER LEARNING FOR FEW-SHOT MENINGIOMA SEGMENTATION

被引:0
作者
Yan, Shenghui [1 ]
Liu, Sidong [2 ,3 ]
Di Ieva, Antonio [3 ]
Pagnucco, Maurice [1 ]
Song, Yang [1 ]
机构
[1] Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW, Australia
[2] Macquarie Univ, Ctr Hlth Informat, Sydney, NSW, Australia
[3] Macquarie Univ, Computat NeuroSurg Lab, Sydney, NSW, Australia
来源
IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI 2024 | 2024年
关键词
3D UNet; brain tumor segmentation; few-shot learning; meta-learning; meningioma;
D O I
10.1109/ISBI56570.2024.10635194
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many algorithms have been developed for brain tumor segmentation over the past years, especially since the inception of the BraTS challenge. However, these models mainly focus on glioma segmentation because of their relatively high incidence. Their performance may not hold for other types of brain tumors, such as meningioma, without a large number of samples to re-train or fine-tune the models. In this work, we propose a new meta-transfer learning network for few-shot meningioma segmentation that combines meta-learning and transfer learning. The proposed meta-transfer learning framework learns shared common knowledge using a large amount of data from more easily accessible glioma data, and then adapts quickly to meningiomas with few-shot cases. We show that our meta-transfer learning gains a respective 29.88% and 5.63% increase in Dice score over few-shot transfer learning and few-shot meta-learning, respectively; and achieves comparable performance against its fully-supervised counterpart while only requiring 2% of its training data.
引用
收藏
页数:4
相关论文
共 15 条
[11]   The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) [J].
Menze, Bjoern H. ;
Jakab, Andras ;
Bauer, Stefan ;
Kalpathy-Cramer, Jayashree ;
Farahani, Keyvan ;
Kirby, Justin ;
Burren, Yuliya ;
Porz, Nicole ;
Slotboom, Johannes ;
Wiest, Roland ;
Lanczi, Levente ;
Gerstner, Elizabeth ;
Weber, Marc-Andre ;
Arbel, Tal ;
Avants, Brian B. ;
Ayache, Nicholas ;
Buendia, Patricia ;
Collins, D. Louis ;
Cordier, Nicolas ;
Corso, Jason J. ;
Criminisi, Antonio ;
Das, Tilak ;
Delingette, Herve ;
Demiralp, Cagatay ;
Durst, Christopher R. ;
Dojat, Michel ;
Doyle, Senan ;
Festa, Joana ;
Forbes, Florence ;
Geremia, Ezequiel ;
Glocker, Ben ;
Golland, Polina ;
Guo, Xiaotao ;
Hamamci, Andac ;
Iftekharuddin, Khan M. ;
Jena, Raj ;
John, Nigel M. ;
Konukoglu, Ender ;
Lashkari, Danial ;
Mariz, Jose Antonio ;
Meier, Raphael ;
Pereira, Sergio ;
Precup, Doina ;
Price, Stephen J. ;
Raviv, Tammy Riklin ;
Reza, Syed M. S. ;
Ryan, Michael ;
Sarikaya, Duygu ;
Schwartz, Lawrence ;
Shin, Hoo-Chang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (10) :1993-2024
[12]  
Nichol A, 2018, Arxiv, DOI arXiv:1803.02999
[13]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[14]   TransBTS: Multimodal Brain Tumor Segmentation Using Transformer [J].
Wang, Wenxuan ;
Chen, Chen ;
Ding, Meng ;
Yu, Hong ;
Zha, Sen ;
Li, Jiangyun .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT I, 2021, 12901 :109-119
[15]   Stroke Lesion Segmentation from Low-Quality and Few-Shot MRIs via Similarity-Weighted Self-ensembling Framework [J].
Zhang, Dong ;
Confidence, Raymond ;
Anazodo, Udunna .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT V, 2022, 13435 :87-96