BACTERIA TRACKING AND DIVISION DETECTION USING GRAPH NEURAL NETWORKS

被引:0
作者
Kunzmann, Moritz [1 ]
Elizondo-Cantu, M. Carolina [2 ,3 ,4 ]
Bischofs, Ilka B. [2 ,3 ,4 ]
Rohr, Karl [1 ]
机构
[1] Heidelberg Univ, IPMB, BioQuant, Biomed Comp Vis Grp, Heidelberg, Germany
[2] Heidelberg Univ, Ctr Mol Biol ZMBH, Heidelberg, Germany
[3] Heidelberg Univ, BioQuant, Heidelberg, Germany
[4] Max Planck Inst Terr Microbiol, Marburg, Germany
来源
IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI 2024 | 2024年
关键词
Bacteria Tracking; Deep Learning; Graph Neural Networks; Microscopy Images; CELL-TRACKING;
D O I
10.1109/ISBI56570.2024.10635121
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tracking of bacteria is important to investigate dynamic biological processes at the single cell level. While deep learning methods are commonly used for tracking objects in natural images, such methods are rare for bacteria. We propose a novel graph neural network for bacteria tracking and division detection. Object correspondences and divisions are represented by the edges of a graph, and both tasks of tracking and division detection are performed simultaneously by graph edge classification. The method was evaluated using live-cell bright-field microscopy image sequences of spore germination and outgrowth of rod-shaped Bacillus subtilis. It turned out that our method outperforms previous methods. Particularly, we found that direct division detection by graph edge classification outperforms overlap-based division detection.
引用
收藏
页数:5
相关论文
共 29 条
[21]  
Panteli A, 2020, PR MACH LEARN RES, V121, P570
[22]   A Graph Convolutional Neural Network Based Approach for Traffic Monitoring Using Augmented Detections with Optical Flow [J].
Papakis, Ioannis ;
Sarkar, Abhijit ;
Karpatne, Anuj .
2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, :2980-2986
[23]   Segmenting and tracking cell instances with cosine embeddings and recurrent hourglass networks [J].
Payer, Christian ;
Stern, Darko ;
Feiner, Marlies ;
Bischof, Horst ;
Urschler, Martin .
MEDICAL IMAGE ANALYSIS, 2019, 57 :106-119
[24]   Geometric deep learning reveals the spatiotemporal features of microscopic motion [J].
Pineda, Jesus ;
Midtvedt, Benjamin ;
Bachimanchi, Harshith ;
Noe, Sergio ;
Midtvedt, Daniel ;
Volpe, Giovanni ;
Manzo, Carlo .
NATURE MACHINE INTELLIGENCE, 2023, 5 (01) :71-+
[25]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[26]   Cellpose: a generalist algorithm for cellular segmentation [J].
Stringer, Carsen ;
Wang, Tim ;
Michaelos, Michalis ;
Pachitariu, Marius .
NATURE METHODS, 2021, 18 (01) :100-+
[27]   STrack: A Tool to Simply Track Bacterial Cells in Microscopy Time-Lapse Images [J].
Todorov, Helena ;
Trabajo, Tania Miguel ;
Van der Meer, Jan Roelof .
MSPHERE, 2023, 8 (02)
[28]   An objective comparison of cell-tracking algorithms [J].
Ulman, Vladimir ;
Maska, Martin ;
Magnusson, Klas E. G. ;
Ronneberger, Olaf ;
Haubold, Carsten ;
Harder, Nathalie ;
Matula, Pavel ;
Matula, Petr ;
Svoboda, David ;
Radojevic, Miroslav ;
Smal, Ihor ;
Rohr, Karl ;
Jalden, Joakim ;
Blau, Helen M. ;
Dzyubachyk, Oleh ;
Lelieveldt, Boudewijn ;
Xiao, Pengdong ;
Li, Yuexiang ;
Cho, Siu-Yeung ;
Dufour, Alexandre C. ;
Olivo-Marin, Jean-Christophe ;
Reyes-Aldasoro, Constantino C. ;
Solis-Lemus, Jose A. ;
Bensch, Robert ;
Brox, Thomas ;
Stegmaier, Johannes ;
Mikut, Ralf ;
Wolf, Steffen ;
Hamprecht, Fred A. ;
Esteves, Tiago ;
Quelhas, Pedro ;
Demirel, Omer ;
Malmstrom, Lars ;
Jug, Florian ;
Tomancak, Pavel ;
Meijering, Erik ;
Munoz-Barrutia, Arrate ;
Kozubek, Michal ;
Ortiz-de-Solorzano, Carlos .
NATURE METHODS, 2017, 14 (12) :1141-+
[29]   Multi-Similarity Loss with General Pair Weighting for Deep Metric Learning [J].
Wang, Xun ;
Han, Xintong ;
Huang, Weiling ;
Dong, Dengke ;
Scott, Matthew R. .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :5017-5025