BACTERIA TRACKING AND DIVISION DETECTION USING GRAPH NEURAL NETWORKS

被引:0
作者
Kunzmann, Moritz [1 ]
Elizondo-Cantu, M. Carolina [2 ,3 ,4 ]
Bischofs, Ilka B. [2 ,3 ,4 ]
Rohr, Karl [1 ]
机构
[1] Heidelberg Univ, IPMB, BioQuant, Biomed Comp Vis Grp, Heidelberg, Germany
[2] Heidelberg Univ, Ctr Mol Biol ZMBH, Heidelberg, Germany
[3] Heidelberg Univ, BioQuant, Heidelberg, Germany
[4] Max Planck Inst Terr Microbiol, Marburg, Germany
来源
IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI 2024 | 2024年
关键词
Bacteria Tracking; Deep Learning; Graph Neural Networks; Microscopy Images; CELL-TRACKING;
D O I
10.1109/ISBI56570.2024.10635121
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tracking of bacteria is important to investigate dynamic biological processes at the single cell level. While deep learning methods are commonly used for tracking objects in natural images, such methods are rare for bacteria. We propose a novel graph neural network for bacteria tracking and division detection. Object correspondences and divisions are represented by the edges of a graph, and both tasks of tracking and division detection are performed simultaneously by graph edge classification. The method was evaluated using live-cell bright-field microscopy image sequences of spore germination and outgrowth of rod-shaped Bacillus subtilis. It turned out that our method outperforms previous methods. Particularly, we found that direct division detection by graph edge classification outperforms overlap-based division detection.
引用
收藏
页数:5
相关论文
共 29 条
[1]  
[Anonymous], 2017, P ICLR
[2]   Graph Neural Network for Cell Tracking in Microscopy Videos [J].
Ben-Haim, Tal ;
Raviv, Tammy Riklin .
COMPUTER VISION, ECCV 2022, PT XXI, 2022, 13681 :610-626
[3]  
Bise R, 2011, I S BIOMED IMAGING, P1004, DOI 10.1109/ISBI.2011.5872571
[4]   Multi-Object Tracking and Segmentation Via Neural Message Passing [J].
Braso, Guillem ;
Cetintas, Orcun ;
Leal-Taixe, Laura .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (12) :3035-3053
[5]   Omnipose: a high-precision morphology-independent solution for bacterial cell segmentation [J].
Cutler, Kevin J. ;
Stringer, Carsen ;
Lo, Teresa W. ;
Rappez, Luca ;
Stroustrup, Nicholas ;
Peterson, S. Brook ;
Wiggins, Paul A. ;
Mougous, Joseph D. .
NATURE METHODS, 2022, 19 (11) :1438-+
[6]   TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines [J].
Ershov, Dmitry ;
Phan, Minh-Son ;
Pylvanainen, Joanna W. ;
Rigaud, Stephane U. ;
Le Blanc, Laure ;
Charles-Orszag, Arthur ;
Conway, James R. W. ;
Laine, Romain F. ;
Roy, Nathan H. ;
Bonazzi, Daria ;
Dumenil, Guillaume ;
Jacquemet, Guillaume ;
Tinevez, Jean-Yves .
NATURE METHODS, 2022, 19 (07) :829-+
[7]  
Gilmer J, 2017, PR MACH LEARN RES, V70
[8]  
Grünberger A, 2012, LAB CHIP, V12, P2060, DOI [10.1039/c21c40156h, 10.1039/c2lc40156h]
[9]   Consistent Cell Tracking in Multi-frames with Spatio-Temporal Context by Object-Level Warping Loss [J].
Hayashida, Junya ;
Nishimura, Kazuya ;
Bise, Ryoma .
2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, :1759-1768
[10]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778