Performance of Commercial Deep Learning-Based Auto-Segmentation Software for Breast Cancer Radiation Therapy Planning: A Systematic Review

被引:2
作者
Ng, Curtise K. C. [1 ,2 ]
机构
[1] Curtin Univ, Curtin Med Sch, GPOB U1987, Perth, WA 6845, Australia
[2] Curtin Univ, Curtin Hlth Innovat Res Inst CHIRI, Fac Hlth Sci, GPOB U1987, Perth, WA 6845, Australia
关键词
artificial intelligence; artificial neural network; automatic; clinical target volumes; computed tomography; contouring; delineation; machine learning; organs at risk; radiotherapy; AUTOMATIC SEGMENTATION; TARGET VOLUME; ORGANS; ATLAS; REGISTRATION; SCIENCE; RISK;
D O I
10.3390/mti8120114
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As yet, no systematic review on commercial deep learning-based auto-segmentation (DLAS) software for breast cancer radiation therapy (RT) planning has been published, although NRG Oncology has highlighted the necessity for such. The purpose of this systematic review is to investigate the performances of commercial DLAS software packages for breast cancer RT planning and methods for their performance evaluation. A literature search was conducted with the use of electronic databases. Fifteen papers met the selection criteria and were included. The included studies evaluated eight software packages (Limbus Contour, Manteia AccuLearning, Mirada DLCExpert, MVision.ai Contour+, Radformation AutoContour, RaySearch RayStation, Siemens syngo.via RT Image Suite/AI-Rad Companion Organs RT, and Therapanacea Annotate). Their findings show that the DLAS software could contour ten organs at risk (body, contralateral breast, esophagus-overlapping area, heart, ipsilateral humeral head, left and right lungs, liver, and sternum and trachea) and three clinical target volumes (CTVp_breast, CTVp_chestwall, and CTVn_L1) up to the clinically acceptable standard. This can contribute to 45.4%-93.7% contouring time reduction per patient. Although NRO Oncology has suggested that every clinical center should conduct its own DLAS software evaluation before clinical implementation, such testing appears particularly crucial for Manteia AccuLearning, Mirada DLCExpert, and MVision.ai Contour+ as a result of the methodological weaknesses of the corresponding studies such as the use of small datasets collected retrospectively from single centers for the evaluation.
引用
收藏
页数:23
相关论文
共 72 条
[1]   Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis [J].
Aggarwal, Ravi ;
Sounderajah, Viknesh ;
Martin, Guy ;
Ting, Daniel S. W. ;
Karthikesalingam, Alan ;
King, Dominic ;
Ashrafian, Hutan ;
Darzi, Ara .
NPJ DIGITAL MEDICINE, 2021, 4 (01)
[2]   Training, validation, and clinical implementation of a deep-learning segmentation model for radiotherapy of loco-regional breast cancer [J].
Almberg, Sigrun Saur ;
Lervag, Christoffer ;
Frengen, Jomar ;
Eidem, Monica ;
Abramova, Tatiana Mikhailovna ;
Nordstrand, Cecilie Soma ;
Alsaker, Mirjam Delange ;
Tondel, Hanne ;
Raj, Sunil Xavier ;
Wanderas, Anne Dybdahl .
RADIOTHERAPY AND ONCOLOGY, 2022, 173 :62-68
[3]   Clinical evaluation of a deep learning segmentation model including manual adjustments afterwards for locally advanced breast cancer [J].
Bakx, Nienke ;
Rijkaart, Dorien ;
van der Sangen, Maurice ;
Theuws, Jacqueline ;
van der Toorn, Peter -Paul ;
Verrijssen, An-Sofie ;
van der Leer, Jorien ;
Mutsaers, Joline ;
Van Nunen, Therese ;
Reinders, Marjon ;
Schuengel, Inge ;
Smits, Julia ;
Hagelaar, Els ;
van Gruijthuijsen, Dave ;
Bluemink, Johanna ;
Hurkmans, Coen .
TECHNICAL INNOVATIONS & PATIENT SUPPORT IN RADIATION ONCOLOGY, 2023, 26
[4]   Comparison of the output of a deep learning segmentation model for locoregional breast cancer radiotherapy trained on 2 different datasets [J].
Bakx, Nienke ;
van der Sangen, Maurice ;
Theuws, Jacqueline ;
Bluemink, Hanneke ;
Hurkmans, Coen .
TECHNICAL INNOVATIONS & PATIENT SUPPORT IN RADIATION ONCOLOGY, 2023, 26
[5]   Assessment of artificial intelligence (AI) reporting methodology in glioma MRI studies using the Checklist for AI in Medical Imaging (CLAIM) [J].
Bhandari, Abhishta ;
Scott, Luke ;
Weilbach, Manuela ;
Marwah, Ravi ;
Lasocki, Arian .
NEURORADIOLOGY, 2023, 65 (05) :907-913
[6]   Clinical evaluation of a deep learning model for segmentation of target volumes in breast cancer radiotherapy [J].
Buelens, P. ;
Willems, S. ;
Vandewinckele, L. ;
Crijns, W. ;
Maes, F. ;
Weltens, C. G. .
RADIOTHERAPY AND ONCOLOGY, 2022, 171 :84-90
[7]   Evaluation of deep learning-based autosegmentation in breast cancer radiotherapy [J].
Byun, Hwa Kyung ;
Chang, Jee Suk ;
Choi, Min Seo ;
Chun, Jaehee ;
Jung, Jinhong ;
Jeong, Chiyoung ;
Kim, Jin Sung ;
Chang, Yongjin ;
Chung, Seung Yeun ;
Lee, Seungryul ;
Kim, Yong Bae .
RADIATION ONCOLOGY, 2021, 16 (01)
[8]   Intensity Modulated Radiotherapy and Volumetric Modulated Arc Therapy in the Treatment of Breast Cancer: An Updated Review [J].
Chang, Jee Suk ;
Chang, Ji Hyun ;
Kim, Nalee ;
Kim, Yong Bae ;
Shin, Kyung Hwan ;
Kim, Kyubo .
JOURNAL OF BREAST CANCER, 2022, 25 (05) :349-365
[9]   Assessment of deep learning-based auto-contouring on interobserver consistency in target volume and organs-at-risk delineation for breast cancer: Implications for RTQA program in a multi-institutional study [J].
Choi, Min Seo ;
Chang, Jee Suk ;
Kim, Kyubo ;
Kim, Jin Hee ;
Kim, Tae Hyung ;
Kim, Sungmin ;
Cha, Hyejung ;
Cho, Oyeon ;
Choi, Jin Hwa ;
Kim, Myungsoo ;
Kim, Juree ;
Kim, Tae Gyu ;
Yeo, Seung-Gu ;
Chang, Ah Ram ;
Ahn, Sung-Ja ;
Choi, Jinhyun ;
Kang, Ki Mun ;
Kwon, Jeanny ;
Koo, Taeryool ;
Kim, Mi Young ;
Choi, Seo Hee ;
Jeong, Bae Kwon ;
Jang, Bum-Sup ;
Jo, In Young ;
Lee, Hyebin ;
Kim, Nalee ;
Park, Hae Jin ;
Im, Jung Ho ;
Lee, Sea-Won ;
Cho, Yeona ;
Lee, Sun Young ;
Chang, Ji Hyun ;
Chun, Jaehee ;
Lee, Eung Man ;
Kim, Jin Sung ;
Shin, Kyung Hwan ;
Kim, Yong Bae .
BREAST, 2024, 73
[10]   Clinical evaluation of atlas- and deep learning-based automatic segmentation of multiple organs and clinical target volumes for breast cancer [J].
Choi, Min Seo ;
Choi, Byeong Su ;
Chung, Seung Yeun ;
Kim, Nalee ;
Chun, Jaehee ;
Kim, Yong Bae ;
Chang, Jee Suk ;
Kim, Jin Sung .
RADIOTHERAPY AND ONCOLOGY, 2020, 153 :139-145