MORE interpretable multi-omic regulatory networks to characterise phenotypes

被引:0
作者
Aguerralde-Martin, Maider [1 ]
Clemente-Ciscar, Monica [2 ]
Conesa, Ana [3 ]
Tarazona, Sonia [1 ]
机构
[1] Univ Politecn Valencia, Dept Appl Stat Operat Res & Qual, Camide Vera S-N, Valencia 46022, Spain
[2] Igenomix, Ronda Narciso Monturiol, Parque Tecnol Paterna, Paterna 46980, Spain
[3] Spanish Natl Res Council CSIC UV, Inst Integrat Syst Biol, Genom Gene Express Lab, Catedrat Agustin Escardino Benlloch, Paterna 46980, Spain
关键词
multi-omics; regulatory networks; regression models; phenotype comparison; OVARIAN-CANCER; BRCA1; EXPRESSION; MUTATIONS; MICRORNA; BREAST; SERIES; RISKS;
D O I
10.1093/bib/bbaf270
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Studying phenotype-specific regulatory mechanisms is crucial to understanding the molecular basis of diseases and other complex traits. However, existing approaches for constructing multi-omic regulatory networks MO-RN are scarce, and most cannot integrate diverse omics modalities, incorporate prior biological knowledge, or infer phenotype-specific networks. To address these challenges, we present MORE (Multi-Omics REgulation), a novel R package for inferring multi-modal regulatory networks. MORE is available at https://github.com/BiostatOmics/MORE and supports any number and type of omics layers while optionally incorporating prior regulatory knowledge. Leveraging advanced regression-based models and variable selection techniques, MORE identifies significant regulatory relationships. This tool also provides useful functionalities for the biological interpretation of MO-RN: network visualisations, differential regulatory networks, and functional enrichment analyses of key network features. We evaluated MORE on simulated multi-omic datasets and benchmarked it against state-of-the-art tools. Our tool consistently outperformed other methods regarding accuracy in identifying significant regulators, model goodness-of-fit, and computational efficiency. We further applied MORE to a multi-omic ovarian cancer dataset to uncover tumour subtype-specific regulatory mechanisms associated with distinct survival outcomes. This analysis revealed differential regulatory patterns to understand the molecular basis of each subtype. By addressing the limitations of methods for multi-omic network inference, MORE represents a valuable resource for studying regulatory systems. Its ability to construct phenotype-specific regulatory networks with high accuracy and interpretability positions it as a useful resource for researchers seeking to unravel the complexities of molecular interactions and regulatory mechanisms across diverse biological contexts.
引用
收藏
页数:13
相关论文
共 72 条
[1]   A comprehensive review of machine learning techniques for multi-omics data integration: challenges and applications in precision oncology [J].
Acharya, Debabrata ;
Mukhopadhyay, Anirban .
BRIEFINGS IN FUNCTIONAL GENOMICS, 2024, 23 (05) :549-560
[2]   RegNetB: Predicting Relevant Regulator-Gene Relationships in Localized Prostate Tumor Samples [J].
Alvarez, Angel ;
Woolf, Peter J. .
BMC BIOINFORMATICS, 2011, 12
[3]   The emerging role and targetability of the TCA cycle in cancer metabolism [J].
Anderson, Nicole M. ;
Mucka, Patrick ;
Kern, Joseph G. ;
Feng, Hui .
PROTEIN & CELL, 2018, 9 (02) :216-237
[4]   Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history:: A combined analysis of 22 studies [J].
Antoniou, A ;
Pharoah, PDP ;
Narod, S ;
Risch, HA ;
Eyfjord, JE ;
Hopper, JL ;
Loman, N ;
Olsson, H ;
Johannsson, O ;
Borg, Å ;
Pasini, B ;
Radice, P ;
Manoukian, S ;
Eccles, DM ;
Tang, N ;
Olah, E ;
Anton-Culver, H ;
Warner, E ;
Lubinski, J ;
Gronwald, J ;
Gorski, B ;
Tulinius, H ;
Thorlacius, S ;
Eerola, H ;
Nevanlinna, H ;
Syrjäkoski, K ;
Kallioniemi, OP ;
Thompson, D ;
Evans, C ;
Peto, J ;
Lalloo, F ;
Evans, DG ;
Easton, DF .
AMERICAN JOURNAL OF HUMAN GENETICS, 2003, 72 (05) :1117-1130
[5]   Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets [J].
Argelaguet, Ricard ;
Velten, Britta ;
Arnol, Damien ;
Dietrich, Sascha ;
Zenz, Thorsten ;
Marioni, John C. ;
Buettner, Florian ;
Huber, Wolfgang ;
Stegle, Oliver .
MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)
[6]   Gene Regulatory Identification Based on the Novel Hybrid Time-Delayed Method [J].
Bao, Wenzheng ;
Lin, Xiao ;
Yang, Bin ;
Chen, Baitong .
FRONTIERS IN GENETICS, 2022, 13
[7]   Integrated genomic analyses of ovarian carcinoma [J].
Bell, D. ;
Berchuck, A. ;
Birrer, M. ;
Chien, J. ;
Cramer, D. W. ;
Dao, F. ;
Dhir, R. ;
DiSaia, P. ;
Gabra, H. ;
Glenn, P. ;
Godwin, A. K. ;
Gross, J. ;
Hartmann, L. ;
Huang, M. ;
Huntsman, D. G. ;
Iacocca, M. ;
Imielinski, M. ;
Kalloger, S. ;
Karlan, B. Y. ;
Levine, D. A. ;
Mills, G. B. ;
Morrison, C. ;
Mutch, D. ;
Olvera, N. ;
Orsulic, S. ;
Park, K. ;
Petrelli, N. ;
Rabeno, B. ;
Rader, J. S. ;
Sikic, B. I. ;
Smith-McCune, K. ;
Sood, A. K. ;
Bowtell, D. ;
Penny, R. ;
Testa, J. R. ;
Chang, K. ;
Dinh, H. H. ;
Drummond, J. A. ;
Fowler, G. ;
Gunaratne, P. ;
Hawes, A. C. ;
Kovar, C. L. ;
Lewis, L. R. ;
Morgan, M. B. ;
Newsham, I. F. ;
Santibanez, J. ;
Reid, J. G. ;
Trevino, L. R. ;
Wu, Y. -Q. ;
Wang, M. .
NATURE, 2011, 474 (7353) :609-615
[8]   Meta-analysis of BRCA1 and BRCA2 penetrance [J].
Chen, Sining ;
Parmigiani, Giovanni .
JOURNAL OF CLINICAL ONCOLOGY, 2007, 25 (11) :1329-1333
[9]   Epithelial/mesenchymal heterogeneity of high-grade serous ovarian carcinoma samples correlates with miRNA let-7 levels and predicts tumor growth and metastasis [J].
Chirshev, Evgeny ;
Hojo, Nozomi ;
Bertucci, Antonella ;
Sanderman, Linda ;
Nguyen, Anthony ;
Wang, Hanmin ;
Suzuki, Tise ;
Brito, Emmanuel ;
Martinez, Shannalee R. ;
Castanon, Christine ;
Mirshahidi, Saied ;
Vazquez, Marcelo E. ;
Wat, Pamela ;
Oberg, Kerby C. ;
Ioffe, Yevgeniya J. ;
Unternaehrer, Juli J. .
MOLECULAR ONCOLOGY, 2020, 14 (11) :2796-2813
[10]   iDINGO-integrative differential network analysis in genomics with Shiny application [J].
Class, Caleb A. ;
Ha, Min Jin ;
Baladandayuthapani, Veerabhadran ;
Do, Kim-Anh .
BIOINFORMATICS, 2018, 34 (07) :1243-1245