ON THE COMPUTATIONAL COMPLEXITY ASPECTS OF PERFECT ROMAN DOMINATION

被引:2
作者
Mirhoseini, S. H. [1 ]
Rad, N. jafari [1 ]
机构
[1] Shahed Univ, Seyed Dept Math, Tehran, Iran
来源
JOURNAL OF ALGEBRAIC SYSTEMS | 2023年 / 10卷 / 02期
关键词
Dominating set; Perfect dominating set; Roman dominating function; Perfect Roman dominating function; APX-hard; ALGORITHMIC ASPECTS; SETS;
D O I
10.22044/JAS.2021.11146.1554
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
. A perfect Roman dominating function (PRDF) on a graph G is a function f : V(G) -+ {0, 1, 2} such that every vertex u with f(u) = 0 is adjacent to exactly one vertex v for which f(v) = 2. The weight of a PRDF f is the sum of the weights of the vertices under f. The perfect Roman domination number of G is the minimum weight of a PRDF in G. In this paper we study algorithmic and computational complexity aspects of the minimum perfect Roman domination problem (MPRDP). We first correct the proof of a result published in [Bulletin Iran. Math. Soc. 14(2020), 342-351], and using a similar argument, show that MPRDP is APX-hard for graphs with bounded degree 4. We prove that the decision problem associated to MPRDP is NP-complete for star convex bipartite graphs, and it is solvable in linear time for bounded tree-width graphs. We also show that the perfect domination problem and perfect Roman domination problem are not equivalent in computational complexity aspects. Finally we propose an integer linear programming formulation for MPRDP.
引用
收藏
页数:15
相关论文
共 21 条
[1]  
Ahangar HA, 2017, UTILITAS MATHEMATICA, V103, P245
[2]   On maximal Roman domination in graphs [J].
Ahangar, Hossein Abdollahzadeh ;
Chellali, Mustapha ;
Kuziak, Dorota ;
Samodivkin, Vladimir .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (07) :1093-1102
[3]  
[Anonymous], 1979, Computers and Intractability
[4]   Perfect Roman domination in graphs [J].
Banerjee, S. ;
Keil, J. Mark ;
Pradhan, D. .
THEORETICAL COMPUTER SCIENCE, 2019, 796 :1-21
[5]   Varieties of Roman domination II [J].
Chellali, M. ;
Jafari Rad, N. ;
Sheikholeslami, S. M. ;
Volkmann, L. .
AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) :966-984
[6]  
Chellali M., 2020, Structures of Domination in Graphs
[7]  
Chellali M., J. Combin. Math. Comb. Comput.
[8]  
Chellali M., 2020, TOPICS DOMINATION GR, V64, P365, DOI [10.1007/978-3-030-51117-311, DOI 10.1007/978-3-030-51117-311]
[9]   The complexity of combinatorial optimization problems on d-dimensional boxes [J].
Chlebik, Miroslav ;
Chlebikova, Janka .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (01) :158-169
[10]   Roman domination in graphs [J].
Cockayne, EJ ;
Dreyer, PA ;
Hedetniemi, SM ;
Hedetniemi, ST .
DISCRETE MATHEMATICS, 2004, 278 (1-3) :11-22