Prediction of mild cognitive impairment using blood multi-omics data

被引:0
作者
Zhang, Daniel Frank [1 ,2 ]
Bayrak, Cigdem Sevim [3 ]
Zeng, Qi [1 ,3 ,4 ]
Wang, Minghui [1 ]
Zhang, Bin [1 ,3 ,5 ,6 ]
机构
[1] Icahn Sch Med Mt Sinai, Mt Sinai Ctr Transformat Dis Modeling, New York, NY 10029 USA
[2] Rice Univ, Dept Comp Sci, Houston, TX USA
[3] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY 10029 USA
[4] Icahn Sch Med Mt Sinai, Dept Pharmacol Sci, New York, NY USA
[5] Icahn Sch Med Mt Sinai, Dept Artificial Intelligence & Human Hlth, New York, NY 10029 USA
[6] Icahn Sch Med Mt Sinai, Icahn Inst Genom, New York, NY 10029 USA
基金
美国国家卫生研究院;
关键词
mild cognitive impairment; Alzheimer's disease; machine learning; copy number variation; gene expression; ALZHEIMERS-DISEASE;
D O I
10.3389/fgene.2025.1552063
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Mild cognitive impairment (MCI) represents an initial phase of memory or other cognitive function decline and is viewed as an intermediary stage between normal aging and Alzheimer's disease (AD), the most prevalent type of dementia. Individuals with MCI face a heightened risk of progressing to AD, and early detection of MCI can facilitate the prevention of such progression through timely interventions. Nonetheless, diagnosing MCI is challenging because its symptoms can be subtle and are easily missed. Using genomic data from blood samples has been proposed as a non-invasive and cost-efficient approach to build machine learning predictive models for assisting MCI diagnosis. However, these models often exhibit poor performance. In this study, we developed an XGBoost-based machine learning model with AUC (the Area Under the receiver operating characteristic Curve) of 0.9398 utilizing gene expression and copy number variation (CNV) data from patient blood samples. We demonstrated, for the first time, that data at a genome structure level such as CNVs could be as informative as gene expression data to classify MCI patients from normal controls. We identified 149 genomic features that are important for MCI prediction. Notably, these features are enriched in the pathways associated with neurodegenerative diseases, such as neuron development and G protein-coupled receptor activity. Overall, our study not only demonstrates the effectiveness of utilizing blood sample-based multi-omics for predicting MCI, but also provides insights into crucial molecular characteristics of MCI.
引用
收藏
页数:11
相关论文
共 49 条
[1]   Early detection of Alzheimer?' disease using single nucleotide polymorphisms analysis based on gradient boosting tree [J].
Ahmed, Hala ;
Soliman, Hassan ;
Elmogy, Mohammed .
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 146
[2]   Predicting early Alzheimer's with blood biomarkers and clinical features [J].
Almansoori, Muaath Ebrahim ;
Jemimah, Sherlyn ;
Abuhantash, Ferial ;
Alshehhi, Aamna .
SCIENTIFIC REPORTS, 2024, 14 (01)
[3]   2023 Alzheimer's disease facts and figures [J].
不详 .
ALZHEIMERS & DEMENTIA, 2023, 19 (04) :1598-1695
[4]   Role of TET1-mediated epigenetic modulation in Alzheimer's disease [J].
Armstrong, Matthew J. ;
Jin, Yulin ;
Vattathil, Selina M. ;
Huang, Yanting ;
Schroeder, Jason P. ;
Bennet, David A. ;
Qin, Zhaohui S. ;
Wingo, Thomas S. ;
Jin, Peng .
NEUROBIOLOGY OF DISEASE, 2023, 185
[5]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[6]   Association of MGAT4C with major neurocognitive disorder in the Mexican population [J].
Bliskunova, Tatiana ;
Genis-Mendoza, Alma Delia ;
Martinez-Magana, Jose Jaime ;
Vega-Sevey, Julissa Gabriela ;
Jimenez-Genchi, Janett ;
Roche, Andres ;
Guzman, Rafael ;
Zapata, Leonor ;
Castro-Chavira, Susana ;
Fernandez, Thalia ;
Villatoro-Velazquez, Jorge Ameth ;
Camarena, Beatriz ;
Fleiz-Bautista, Clara ;
Bustos-Gamino, Marycarmen ;
Medina-Mora, Maria Elena ;
Nicolini, Humberto .
GENE, 2021, 778
[7]   Primary neurons lacking the SNAREs vti1a and vti1b show altered neuronal development [J].
Bollmann, Christian ;
Schoening, Susanne ;
Kotschnew, Katharina ;
Grosse, Julia ;
Heitzig, Nicole ;
von Mollard, Gabriele Fischer .
NEURAL DEVELOPMENT, 2022, 17 (01)
[8]   Mild Cognitive Impairment: Diagnosis and Subtypes [J].
Bradfield, Nicholas, I .
CLINICAL EEG AND NEUROSCIENCE, 2023, 54 (01) :4-11
[9]   Podocalyxin is required for maintaining blood-brain barrier function during acute inflammation [J].
Cait, Jessica ;
Hughes, Michael R. ;
Zeglinski, Matthew R. ;
Chan, Allen W. ;
Osterhof, Sabrina ;
Scott, R. Wilder ;
Hernaez, Diana Canals ;
Cait, Alissa ;
Vogl, A. Wayne ;
Bernatchez, Pascal ;
Underhill, T. Michael ;
Granville, David J. ;
Murphy, Timothy H. ;
Roskelley, Calvin D. ;
McNagny, Kelly M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (10) :4518-4527
[10]   The Ncoa7 locus regulates V-ATPase formation and function, neurodevelopment and behaviour [J].
Castroflorio, Enrico ;
den Hoed, Joery ;
Svistunova, Daria ;
Finelli, Mattea J. ;
Cebrian-Serrano, Alberto ;
Corrochano, Silvia ;
Bassett, Andrew R. ;
Davies, Benjamin ;
Oliver, Peter L. .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2021, 78 (07) :3503-3524