Module Categories of the Generic Virasoro VOA and Quantum Groups

被引:0
作者
Koshida, Shinji [1 ]
机构
[1] Aalto Univ, Dept Math & Syst Anal, Espoo, Finland
基金
芬兰科学院;
关键词
vertex operator algebra; Virasoro algebra; quantum group; CONFORMAL FIELD-THEORIES; TENSOR-PRODUCTS; REPRESENTATIONS; SYMMETRY; ALGEBRAS; FUSION;
D O I
10.3842/SIGMA.2025.039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the equivalence between two ribbon tensor categories. On the one hand, we consider the category of modules of the Virasoro vertex operator algebra with generic central charge (generic Virasoro VOA) generated by those simple modules lying in the first row of the Kac table. On the other hand, we take the category of finite-dimensional type I modules of the quantum group Uq(s[2) with q determined by the central charge. This is a continuation of our previous work in which we examined intertwining operators for the generic Virasoro VOA in detail. Our strategy to show the categorical equivalence is to take those results as input and directly compare the structures of tensor categories. Therefore, we are to execute the most elementary proof of categorical equivalence. We also study the category of C1-cofinite modules of the generic Virasoro VOA. We show that it is ribbon equivalent to the category of finite-dimensional type I modules of Uq(s[2) circle times Uq(s[2), where q and q are again related to the central charge.
引用
收藏
页数:26
相关论文
共 59 条
[11]  
DRINFELD VG, 1990, LENINGRAD MATH J, V1, P1419
[12]  
Etingof P., 2015, Mathematical Surveys and Monographs, V205
[13]   Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center [J].
Feigin, B. L. ;
Gainutdinov, A. M. ;
Semikhatov, A. M. ;
Tipunin, I. Yu. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 265 (01) :47-93
[14]   TOPOLOGICAL REPRESENTATIONS OF THE QUANTUM GROUP U(Q)(SL2) [J].
FELDER, G ;
WIECZERKOWSKI, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 138 (03) :583-605
[15]   An equivalence of fusion categories [J].
Finkelberg, M .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1996, 6 (02) :249-267
[16]  
Frenkel E., 2004, arXiv:math.QA/0007054, V88
[17]   Canonical bases in tensor products and graphical calculus for U-q(sI(2)) [J].
Frenkel, IB ;
Khovanov, MG .
DUKE MATHEMATICAL JOURNAL, 1997, 87 (03) :409-480
[18]  
FRENKEL IB, 1988, PURE APPL MATH, V134
[19]   Vertex algebras associated to modified regular representations of the Virasoro algebra [J].
Frenkel, Igor ;
Zhu, Minxian .
ADVANCES IN MATHEMATICS, 2012, 229 (06) :3468-3507
[20]   Kazhdan-Lusztig correspondence for the representation category of the triplet W-algebra in logarithmic CFT [J].
Gainutdinov, A. M. ;
Semikhatov, A. M. ;
Tipunin, I. Yu. ;
Feigin, B. L. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2006, 148 (03) :1210-1235