Drift-cyclotron loss-cone instability in 3-D simulations of a sloshing-ion simple mirror

被引:0
作者
Tran, Aaron [1 ]
Frank, Samuel J. [2 ]
Le, Ari Y. [3 ]
Stanier, Adam J. [3 ]
Wetherton, Blake A. [3 ]
Egedal, Jan [1 ]
Endrizzi, Douglass A. [2 ]
Harvey, Robert W. [4 ]
Petrov, Yuri V. [4 ]
Qian, Tony M. [1 ,5 ]
Sanwalka, Kunal [1 ]
Viola, Jesse [2 ]
Forest, Cary B. [1 ,2 ]
Zweibel, Ellen G. [1 ,6 ]
机构
[1] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
[2] Realta Fus, Madison, WI USA
[3] Los Alamos Natl Lab, Los Alamos, NM USA
[4] CompX, Del Mar, CA USA
[5] Princeton Plasma Phys Lab, Princeton, NJ USA
[6] Univ Wisconsin, Dept Astron, Madison, WI USA
基金
美国国家科学基金会;
关键词
Plasma Simulation; Plasma Instabilities; Plasma Devices; HIGH-BETA; PLASMA; STABILIZATION; MODE; WAVES; TRAP; CONFINEMENT; DEPENDENCE; ANISOTROPY; HARMONICS;
D O I
10.1017/S0022377825000480
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The kinetic stability of collisionless, sloshing beam-ion ( $45<^>\circ$ pitch angle) plasma is studied in a three-dimensional (3-D) simple magnetic mirror, mimicking the Wisconsin high-temperature superconductor axisymmetric mirror experiment. The collisional Fokker-Planck code CQL3D-m provides a slowing-down beam-ion distribution to initialize the kinetic-ion/fluid-electron code Hybrid-VPIC, which then simulates free plasma decay without external heating or fuelling. Over $1$ - $10\;\mathrm{\unicode{x03BC} s}$ , drift-cyclotron loss-cone (DCLC) modes grow and saturate in amplitude. The DCLC scatters ions to a marginally stable distribution with gas-dynamic rather than classical-mirror confinement. Sloshing ions can trap cool (low-energy) ions in an electrostatic potential well to stabilize DCLC, but DCLC itself does not scatter sloshing beam-ions into the said well. Instead, cool ions must come from external sources such as charge-exchange collisions with a low-density neutral population. Manually adding cool $\mathord {\sim } 1\;\mathrm{keV}$ ions improves beam-ion confinement several-fold in Hybrid-VPIC simulations, which qualitatively corroborates prior measurements from real mirror devices with sloshing ions.
引用
收藏
页数:36
相关论文
共 90 条
[1]   NONLINEAR DYNAMICS OF DRIFT-CYCLOTRON INSTABILITY [J].
AAMODT, RE ;
LEE, YC ;
LIU, CS ;
ROSENBLUTH, MN .
PHYSICAL REVIEW LETTERS, 1977, 39 (26) :1660-1664
[2]   ELECTRON STABILIZATION OF DRIFT-CONE MODES [J].
AAMODT, RE .
PHYSICS OF FLUIDS, 1977, 20 (06) :960-962
[3]   NON-LINEAR EVOLUTION OF DRIFT CYCLOTRON MODES [J].
AAMODT, RE ;
COHEN, BI ;
LEE, YC ;
LIU, CS ;
NICHOLSON, DR ;
ROSENBLUTH, MN .
PHYSICS OF FLUIDS, 1981, 24 (01) :55-65
[4]  
Anderson J.K., 2024, B AM PHYS SOC
[5]   Progress of open systems at Budker Institute of Nuclear Physics [J].
Bagryansky, P. A. .
JOURNAL OF PLASMA PHYSICS, 2024, 90 (02)
[6]  
Bajborodov J.T., 1971, Investigation of Plasma Decay in the PR-6 Adiabatic Trap, V2
[7]   TURBULENT LIFETIMES IN MIRROR MACHINES [J].
BALDWIN, DE ;
BERK, HL ;
PEARLSTEIN, LD .
PHYSICAL REVIEW LETTERS, 1976, 36 (17) :1051-1054
[8]   END-LOSS PROCESSES FROM MIRROR MACHINES [J].
BALDWIN, DE .
REVIEWS OF MODERN PHYSICS, 1977, 49 (02) :317-339
[9]   VORTEX CONFINEMENT OF PLASMAS IN SYMMETRIC MIRROR TRAPS [J].
Beklemishev, Alexei D. ;
Bagryansky, Peter A. ;
Chaschin, Maxim S. ;
Soldatkina, Elena I. .
FUSION SCIENCE AND TECHNOLOGY, 2010, 57 (04) :351-360
[10]  
Berk H.L., 1983, Soviet J. Plasma Phys, V9, P108