Primitive two-dimensional prime-universality of quadratic forms

被引:0
作者
Budarina, N. [1 ]
机构
[1] Dundalk Inst Technol, Dept Comp Sci & Math, Dublin Rd, Dundalk A91 K584, Louth, Ireland
关键词
Classically integral quadratic forms; Primitive representation; p-adic symbol; REPRESENTATIONS;
D O I
10.1016/j.jpaa.2025.107968
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give a local description of quadratic forms that primitively represent all binary forms with specific Jordan decompositions over the odd ring Zp. As an application of the local results, we prove a result related to a two-dimensional generalization of primitive prime-universality. (c) 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:24
相关论文
共 23 条
[11]   Primitively universal quaternary quadratic forms [J].
Ju, Jangwon ;
Kim, Daejun ;
Kim, Kyoungmin ;
Kim, Mingyu ;
Oh, Byeong-Kweon .
JOURNAL OF NUMBER THEORY, 2023, 242 :181-207
[12]   PRIME-UNIVERSAL DIAGONAL QUADRATIC FORMS [J].
Ju, Jangwon ;
Kim, Daejun ;
Kim, Kyoungmin ;
Kim, Mingyu ;
Oh, Byeong-Kweon .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 103 (03) :390-404
[13]  
KIM BM, 1999, CONT MATH, V249, P51, DOI [10.1090/conm/249/03747, DOI 10.1090/CONM/249/03747]
[14]   Representations of integral quadratic forms by sums of squares [J].
Kim, MH ;
Oh, BK .
MATHEMATISCHE ZEITSCHRIFT, 2005, 250 (02) :427-442
[15]  
Ko C., 1937, Q J MATH OXFORD, V8, P81, DOI [DOI 10.1093/QMATH/OS-8.1.81, 10.1093/qmath/os-8.1.81]
[16]  
Lagrange J.-L., 1770, OEUVRES, P189
[17]  
Mordell L.J., 1930, Q J MATH OXFORD, V1, P276, DOI [DOI 10.1093/QMATH/OS-1.1.276, 10.1093/qmath/os-1.1.276]
[18]   Primitively 2-universal senary integral quadratic forms [J].
Oh, Byeong-Kweon ;
Yoon, Jongheun .
JOURNAL OF NUMBER THEORY, 2024, 264 :148-183
[19]   Positive definite n-regular quadratic forms [J].
Oh, Byeong-Kweon .
INVENTIONES MATHEMATICAE, 2007, 170 (02) :421-453
[20]   THE INTEGRAL REPRESENTATIONS OF QUADRATIC FORMS OVER LOCAL FIELDS [J].
OMEARA, OT .
AMERICAN JOURNAL OF MATHEMATICS, 1958, 80 (04) :843-878