The regulatory effects and applications of TIGIT/CD155 on the tumor microenvironment in HCC

被引:0
作者
Li, Wenting [1 ,2 ]
Li, Yukun [2 ,3 ]
Li, Yao [4 ]
Yang, Mingqi [2 ,5 ]
Peng, Haichuan [1 ,2 ]
Sun, Hongwei [2 ]
Jiang, Ping [6 ]
Zhu, Yizhun [4 ]
Chen, Qiang [1 ,7 ]
Duan, Xiaobing [2 ,8 ]
Zhao, Wei [2 ,6 ]
机构
[1] Univ Macau, Fac Hlth Sci, Canc Ctr, Taipa, Macao, Peoples R China
[2] Jinan Univ, Zhuhai Peoples Hosp, Guangdong Prov Key Lab Tumor Intervent Diag & Trea, Affiliated Hosp,Beijing Inst Technol,Zhuhai Clin M, Zhuhai 519000, Peoples R China
[3] Sun Yat Sen Univ, Hui Ya Hosp, Affiliated Hosp 1, Hui Zhou, Peoples R China
[4] Macau Univ Sci & Technol, Sch Pharm, Lab Drug Discovery Nat Resources & Industrializat, Macau, Peoples R China
[5] Macau Univ Sci & Technol, Fac Med, Macau, Peoples R China
[6] South China Univ Technol, Affiliated Hosp 2, Guangzhou Pepoples Hosp 1, Sch Med, Guangzhou, Peoples R China
[7] Univ Macau, MOE Frontier Sci Ctr Precis Oncol, Taipa, Macao, Peoples R China
[8] Guangzhou Med Univ, Clin Lab Med Dept, Affiliated Hosp 2, Guangzhou, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
CD155; hepatocellular carcinoma; immune checkpoint inhibitor; TIGIT; ANTI-TIGIT; T-CELLS; POLIOVIRUS RECEPTOR; IMMUNE HOMEOSTASIS; B-CELLS; CANCER; IMMUNOTHERAPY; MACROPHAGES; EXPRESSION; PROMOTES;
D O I
10.1002/VIW.20240071
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hepatocellular carcinoma (HCC) is the most commonly occurring liver cancer, and poses a significant burden on individuals, society, the economy, and the healthcare system. Despite advancements in therapeutic options such as surgical interventions and targeted therapies, the complex etiology and clinical presentations of liver cancer continue to result in suboptimal treatment responses. Therefore, identifying more effective treatment methods has become a priority in HCC research. Targeting programmed cell death protein 1 with immune checkpoint inhibitors has significantly improved cancer treatment outcomes; however, these drugs are still limited by their suboptimal efficacy and risk of immune-related adverse reactions, which can result in death. TIGIT, a newly emerging immune checkpoint, provides a novel focus for immunotherapy. The TIGIT/CD155 axis actively reprograms the tumor microenvironment (TME), driving carcinogenesis, immune evasion, and metastatic spread. This review systematically elucidates the dynamic regulatory networks and biological impacts of the TIGIT/CD155 axis in the HCC TME, while evaluating its therapeutic potential through two exploratory strategies: (i) TIGIT inhibitors have the potential to augment the anticancer efficacy of PD-1/PD-L1 blockade, and (ii) combination regimens integrating TIGIT-targeted therapies with antibody-drug conjugates (ADCs) or chimeric antigen receptor macrophages (CAR-Ms) could represent a viable approach to overcoming the efficacy limitations inherent to monotherapy.
引用
收藏
页数:19
相关论文
共 178 条
[1]   CD96 targeted antibodies need not block CD96-CD155 interactions to promote NK cell anti-metastatic activity [J].
Aguilera, Amelia Roman ;
Lutzky, Viviana P. ;
Mittal, Deepak ;
Li, Xian-Yang ;
Stannard, Kimberley ;
Takeda, Kazuyoshi ;
Bernhardt, Guenter ;
Teng, Michele W. L. ;
Dougall, William C. ;
Smyth, Mark J. .
ONCOIMMUNOLOGY, 2018, 7 (05)
[2]   Conversion of antigen-specific effector/memory T cells into Foxp3-expressing Treg cells by inhibition of CDK8/19 [J].
Akamatsu, Masahiko ;
Mikami, Norihisa ;
Ohkura, Naganari ;
Kawakami, Ryoji ;
Kitagawa, Yohko ;
Sugimoto, Atsushi ;
Hirota, Keiji ;
Nakamura, Naoto ;
Ujihara, Satoru ;
Kurosaki, Toshio ;
Hamaguchi, Hisao ;
Harada, Hironori ;
Xia, Guliang ;
Morita, Yoshiaki ;
Aramori, Ichiro ;
Narumiya, Shuh ;
Sakaguchi, Shimon .
SCIENCE IMMUNOLOGY, 2019, 4 (40)
[3]   A Novel Epigenetic Strategy to Concurrently Block Immune Checkpoints PD-1/PD-L1 and CD155/TIGIT in Hepatocellular Carcinoma [J].
Assal, Reem A. ;
Elemam, Noha M. ;
Mekky, Radwa Y. ;
Attia, Abdelrahman A. ;
Soliman, Aya Hesham ;
Gomaa, Asmaa Ibrahim ;
Efthimiadou, Eleni K. ;
Braoudaki, Maria ;
Fahmy, Sherif Ashraf ;
Youness, Rana A. .
TRANSLATIONAL ONCOLOGY, 2024, 45
[4]   A Phase I Study of Locoregional High-Dose Autologous Natural Killer Cell Therapy With Hepatic Arterial Infusion Chemotherapy in Patients With Locally Advanced Hepatocellular Carcinoma [J].
Bae, Woo Kyun ;
Lee, Byung Chan ;
Kim, Hyeon-Jong ;
Lee, Je-Jung ;
Chung, Ik-Joo ;
Cho, Sung Bum ;
Koh, Yang Seok .
FRONTIERS IN IMMUNOLOGY, 2022, 13
[5]   Mechanistic convergence of the TIGIT and PD-1 inhibitory pathways necessitates co-blockade to optimize anti-tumor CD8+ T cell responses [J].
Banta, Karl L. ;
Xu, Xiaozheng ;
Chitre, Avantika S. ;
Au-Yeung, Amelia ;
Takahashi, Chikara ;
O'Gorman, William E. ;
Wu, Thomas D. ;
Mittman, Stephanie ;
Cubas, Rafael ;
Comps-Agrar, Laetitia ;
Fulzele, Amit ;
Bennett, Eric J. ;
Grogan, Jane L. ;
Hui, Enfu ;
Chiang, Eugene Y. ;
Mellman, Ira .
IMMUNITY, 2022, 55 (03) :512-+
[6]   Cancer stem cell-immune cell crosstalk in tumour progression [J].
Bayik, Defne ;
Lathia, Justin D. .
NATURE REVIEWS CANCER, 2021, 21 (08) :526-536
[7]   TIGIT Safeguards Liver Regeneration Through Regulating Natural Killer Cell-Hepatocyte Crosstalk [J].
Bi, Jiacheng ;
Zheng, Xiaodong ;
Chen, Yongyan ;
Wei, Haiming ;
Sun, Rui ;
Tian, Zhigang .
HEPATOLOGY, 2014, 60 (04) :1389-1398
[8]   T-Cell Ig and ITIM Domain Regulates Natural Killer Cell Activation in Murine Acute Viral Hepatitis [J].
Bi, Jiacheng ;
Zhang, Qing ;
Liang, Dan ;
Xiong, Lei ;
Wei, Haiming ;
Sun, Rui ;
Tian, Zhigang .
HEPATOLOGY, 2014, 59 (05) :1715-1725
[9]   Molecular Pathways: Targeting CD96 and TIGIT for Cancer Immunotherapy [J].
Blake, Stephen J. ;
Dougall, William C. ;
Miles, John J. ;
Teng, Michele W. L. ;
Smyth, Mark J. .
CLINICAL CANCER RESEARCH, 2016, 22 (21) :5183-5188
[10]   Gene of the month: T-cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) [J].
Bolm, Louisa ;
Petruch, Natalie ;
Sivakumar, Shivan ;
Annels, Nicola E. ;
Frampton, Adam Enver .
JOURNAL OF CLINICAL PATHOLOGY, 2022, 75 (04) :217-221