Development and validation of machine learning models for early diagnosis and prognosis of lung adenocarcinoma using miRNA expression profiles

被引:1
作者
Lin, Lin [1 ]
Bao, Yongxia [1 ]
机构
[1] Harbin Med Univ, Affiliated Hosp 2, Dept Resp & Crit Care Med, 246 Xue Fu Rd, Harbin 150000, Heilongjiang, Peoples R China
基金
黑龙江省自然科学基金;
关键词
lung adenocarcinoma; machine learning; miRNA; prognostic model; CANCER CELLS; METASTASIS;
D O I
10.1177/18758592241308756
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Objective Study aims to develop diagnostic and prognostic models for lung adenocarcinoma (LUAD) using Machine learning(ML)algorithms, aiming to enhance clinical decision-making accuracy.Methods Data from The Cancer Genome Atlas (TCGA) for LUAD patients were split into training (n = 196) and test sets (n = 133). Feature selection (Least Absolute Shrinkage and Selection Operator (LASSO), Random Forest (RF), and Support Vector Machine (SVM)) identified miRNAs distinguishing stage I LUAD. Six ML algorithms predicted pulmonary node classification. Model performance was evaluated using Receiver Operating Characteristic (ROC) curve, Precision-Recall (PR) curves, and Error Rates (CE). A prognostic model was constructed using Lasso Cox regression. Risk score plots were generated, and model performance was assessed using Kaplan-Meier (K-M) and time-dependent ROC curves. Functional enrichment analyses investigated miRNA function and mechanism.Results The feature selection results identified five miRNA molecules as distinguishing characteristics between early-stage LUAD and adjacent non-cancerous tissues. A prognostic model using 13 miRNAs predicted poorer outcomes for patients with higher risk scores, supported by time-dependent ROC curves and a nomogram. Functional enrichment analysis identified cancer-related signaling pathways for the biomarkers.Conclusion ML identified a diagnostic five-miRNA signature and a prognostic 13-miRNA model for LUAD, both robust and reliable.
引用
收藏
页数:16
相关论文
共 21 条
[1]   Lung Cancer Incidence and Mortality with Extended Follow-up in the National Lung Screening Trial [J].
Aberle, Denise R. ;
Black, William C. ;
Chiles, Caroline ;
Church, Timothy R. ;
Gareen, Ilana F. ;
Gierada, David S. ;
Mahon, Irene ;
Miller, Eric A. ;
Pinsky, Paul F. ;
Sicks, JoRean D. .
JOURNAL OF THORACIC ONCOLOGY, 2019, 14 (10) :1732-1742
[2]   Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening [J].
Aberle, Denise R. ;
Adams, Amanda M. ;
Berg, Christine D. ;
Black, William C. ;
Clapp, Jonathan D. ;
Fagerstrom, Richard M. ;
Gareen, Ilana F. ;
Gatsonis, Constantine ;
Marcus, Pamela M. ;
Sicks, JoRean D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) :395-409
[3]   Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing [J].
Campbell, Peter J. ;
Pleasance, Erin D. ;
Stephens, Philip J. ;
Dicks, Ed ;
Rance, Richard ;
Goodhead, Ian ;
Follows, George A. ;
Green, Anthony R. ;
Futreal, P. Andy ;
Stratton, Michael R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (35) :13081-13086
[4]   Development and validation of machine learning models to identify high-risk surgical patients using automatically curated electronic health record data (Pythia): A retrospective, single-site study [J].
Corey, Kristin M. ;
Kashyap, Sehj ;
Lorenzi, Elizabeth ;
Lagoo-Deenadayalan, Sandhya A. ;
Heller, Katherine ;
Whalen, Krista ;
Balu, Suresh ;
Heflin, Mitchell T. ;
McDonald, Shelley R. ;
Swaminathan, Madhav ;
Sendak, Mark .
PLOS MEDICINE, 2018, 15 (11)
[5]   Machine Learning in Medicine [J].
Deo, Rahul C. .
CIRCULATION, 2015, 132 (20) :1920-1930
[6]   Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing [J].
Gerlinger, Marco ;
Rowan, Andrew J. ;
Horswell, Stuart ;
Larkin, James ;
Endesfelder, David ;
Gronroos, Eva ;
Martinez, Pierre ;
Matthews, Nicholas ;
Stewart, Aengus ;
Tarpey, Patrick ;
Varela, Ignacio ;
Phillimore, Benjamin ;
Begum, Sharmin ;
McDonald, Neil Q. ;
Butler, Adam ;
Jones, David ;
Raine, Keiran ;
Latimer, Calli ;
Santos, Claudio R. ;
Nohadani, Mahrokh ;
Eklund, Aron C. ;
Spencer-Dene, Bradley ;
Clark, Graham ;
Pickering, Lisa ;
Stamp, Gordon ;
Gore, Martin ;
Szallasi, Zoltan ;
Downward, Julian ;
Futreal, P. Andrew ;
Swanton, Charles .
NEW ENGLAND JOURNAL OF MEDICINE, 2012, 366 (10) :883-892
[7]   Audit of the autoantibody test, EarlyCDT®-Lung, in 1600 patients: An evaluation of its performance in routine clinical practice [J].
Jett, James R. ;
Peek, Laura J. ;
Fredericks, Lynn ;
Jewell, William ;
Pingleton, William W. ;
Robertson, John F. R. .
LUNG CANCER, 2014, 83 (01) :51-55
[8]   Testing breast cancer serum biomarkers for early detection and prognosis in pre-diagnosis samples [J].
Kazarian, Anna ;
Blyuss, Oleg ;
Metodieva, Gergana ;
Gentry-Maharaj, Aleksandra ;
Ryan, Andy ;
Kiseleva, Elena M. ;
Prytomanova, Olga M. ;
Jacobs, Ian J. ;
Widschwendter, Martin ;
Menon, Usha ;
Timms, John F. .
BRITISH JOURNAL OF CANCER, 2017, 116 (04) :501-508
[9]   Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma [J].
Kim, Nayoung ;
Kim, Hong Kwan ;
Lee, Kyungjong ;
Hong, Yourae ;
Cho, Jong Ho ;
Choi, Jung Won ;
Lee, Jung-II I. I. ;
Suh, Yeon-Lim ;
Ku, Bo Mi ;
Eum, Hye Hyeon ;
Choi, Soyean ;
Choi, Yoon-La ;
Joung, Je-Gun ;
Park, Woong-Yang ;
Jung, Hyun Ae ;
Sun, Jong-Mu ;
Lee, Se-Noon ;
Ahn, Jin Seok ;
Park, Keunchil ;
Ahn, Myung-Ju ;
Lee, Hae-Ock .
NATURE COMMUNICATIONS, 2020, 11 (01)
[10]   Factors associated with recurrence in patients with curatively resected stage I-II lung cancer [J].
Koo, Hyeon-Kyoung ;
Jin, Sang-Man ;
Lee, Chang-Hoon ;
Lim, Hyo-Jeong ;
Yim, Jae-Joon ;
Kim, Young Tae ;
Yang, Seok-Chul ;
Yoo, Chul-Gyu ;
Han, Sung Koo ;
Kim, Joo Hyun ;
Shim, Young-Soo ;
Kim, Young Whan .
LUNG CANCER, 2011, 73 (02) :222-229