Convolutional Neural Networks for Diabetic Retinopathy Grading from iPhone Fundus Images

被引:0
作者
Lozano-Juarez, Samuel [1 ]
Velasco-Perez, Nuria [1 ]
Roberts, Ian [2 ]
Bernal, Jeronimo [1 ]
Basurto, Nuno [1 ]
Urda, Daniel [1 ]
Herrero, Alvaro [1 ]
机构
[1] Univ Burgos, Dept Digitalizac, Grp Inteligencia Computac Aplicada GICAP, Escuela Politecn Super, Av Cantabria S-N, Burgos 09006, Spain
[2] Univ Burgos, Fac Ciencias Salud, Dept Ciencias Salud, Paseo Comendadores S-N, Burgos 09001, Spain
来源
HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, HAIS 2023 | 2023年 / 14001卷
关键词
Diabetic retinopathy; fundus image; deep learning; Convolutional Neural Networks; transfer learning; fine-tuning; smartphone; screening;
D O I
10.1007/978-3-031-40725-3_58
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diabetic eye diseases is a major issue in Europe and the prevalence of visual impairment and blindness caused by Diabetic Retinopathy (DR) has significantly increased in the last decades. Efficient screening and early diagnose of DR by family physicians would help to reduce costs in health systems and shorten waiting lists, thus decreasing patients' emotional stress. In this sense, the use of portable image devices (e.g., a mobile phone with a specific fundus image capturing device attach to it) combined with AI-based systems arise as a powerful tool to address this problem. This paper develops 2 well-known pre-trained Convolutional Neural Networks and fine-tune them on a local Spanish cohort and 3 more publicly available fundus image dataset for DR grading. The models trained were evaluated on fundus images captured using an iPhone mobile within the local Spanish cohort. The results of the analysis showed how in one of the settings tested, one of the models was able to surpass human-level performance achieving an AUC of 0.679 in comparison to an AUC of 0.667 achieved by ophthalmologists when diagnosing the grade of DR on the same iPhone fundus images, although further work and improvements need to take place in order to consider it for a realistic deployment in the daily clinical practice.
引用
收藏
页码:685 / 697
页数:13
相关论文
共 28 条
[1]   Knowledge, perceptions, and expectations of Artificial intelligence in radiography practice: A global radiography workforce survey [J].
Akudjedu, Theophilus N. ;
Torre, Sofia ;
Khine, Ricardo ;
Katsifarakis, Dimitris ;
Newman, Donna ;
Malamateniou, Christina .
JOURNAL OF MEDICAL IMAGING AND RADIATION SCIENCES, 2023, 54 (01) :104-116
[2]   Medical Image Analysis using Convolutional Neural Networks: A Review [J].
Anwar, Syed Muhammad ;
Majid, Muhammad ;
Qayyum, Adnan ;
Awais, Muhammad ;
Alnowami, Majdi ;
Khan, Muhammad Khurram .
JOURNAL OF MEDICAL SYSTEMS, 2018, 42 (11)
[3]   Global Evolution of Research in Artificial Intelligence in Health and Medicine: A Bibliometric Study [J].
Bach Xuan Tran ;
Giang Thu Vu ;
Giang Hai Ha ;
Quan-Hoang Vuong ;
Manh-Tung Ho ;
Thu-Trang Vuong ;
Viet-Phuong La ;
Manh-Toan Ho ;
Nghiem, Kien-Cuong P. ;
Huong Lan Thi Nguyen ;
Latkin, Carl A. ;
Tam, Wilson W. S. ;
Cheung, Ngai-Man ;
Nguyen, Hong-Kong T. ;
Ho, Cyrus S. H. ;
Ho, Roger C. M. .
JOURNAL OF CLINICAL MEDICINE, 2019, 8 (03)
[4]   Teleophthalmology screening for diabetic retinopathy through mobile imaging units within Canada [J].
Boucher, Marie Carole ;
Desroches, Gilles ;
Garcia-Salinas, Raul ;
Kherani, Amin ;
Maberley, David ;
Olivier, Sebastien ;
Oh, Mila ;
Stockl, Frank .
CANADIAN JOURNAL OF OPHTHALMOLOGY-JOURNAL CANADIEN D OPHTALMOLOGIE, 2008, 43 (06) :658-668
[5]  
Chollet F, 2015, Keras
[6]   Fred Hollows lecture: Digital screening for eye disease [J].
Constable, IJ ;
Yogesan, K ;
Eikelboom, R ;
Barry, C ;
Cuypers, M .
CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2000, 28 (03) :129-132
[7]   Deep learning-enabled medical computer vision [J].
Esteva, Andre ;
Chou, Katherine ;
Yeung, Serena ;
Naik, Nikhil ;
Madani, Ali ;
Mottaghi, Ali ;
Liu, Yun ;
Topol, Eric ;
Dean, Jeff ;
Socher, Richard .
NPJ DIGITAL MEDICINE, 2021, 4 (01)
[8]   Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis [J].
Flaxman, Seth R. ;
Bourne, Rupert R. A. ;
Resnikoff, Serge ;
Ackland, Peter ;
Braithwaite, Tasanee ;
Cicinelli, Maria V. ;
Das, Aditi ;
Jonas, Jost B. ;
Keeffe, Jill ;
Kempen, John H. ;
Leasher, Janet ;
Limburg, Hans ;
Naidoo, Kovin ;
Pesudovs, Konrad ;
Silvester, Alex ;
Stevens, Gretchen A. ;
Tahhan, Nina ;
Wong, Tien Y. ;
Taylor, Hugh R. .
LANCET GLOBAL HEALTH, 2017, 5 (12) :E1221-E1234
[9]   CNN architecture optimization using bio-inspired algorithms for breast cancer detection in infrared images [J].
Goncalves, Caroline Barcelos ;
Souza, Jefferson R. ;
Fernandes, Henrique .
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 142
[10]   Recent advances in convolutional neural networks [J].
Gu, Jiuxiang ;
Wang, Zhenhua ;
Kuen, Jason ;
Ma, Lianyang ;
Shahroudy, Amir ;
Shuai, Bing ;
Liu, Ting ;
Wang, Xingxing ;
Wang, Gang ;
Cai, Jianfei ;
Chen, Tsuhan .
PATTERN RECOGNITION, 2018, 77 :354-377