Compact four-degree-of-freedom seismometer with capacitive readout

被引:0
作者
Xia, Yulin [1 ]
Martynov, Denis [2 ]
Yan, Hao [3 ]
Miao, Haixing [1 ]
机构
[1] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[2] Univ Birmingham, Inst Gravitat Wave Astron, Sch Phys & Astron, Birmingham B15 2TT, England
[3] Huazhong Univ Sci & Technol, Sch Phys, MOE Key Lab Fundamental Phys Quant Measurements, Ctr Gravitat Expt, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Interferometers - Laser interferometry - Pendulums - Precision balances - Seismic design - Seismic waves - Strain measurement - Velocity measurement;
D O I
10.1103/PhysRevApplied.23.044030
中图分类号
O59 [应用物理学];
学科分类号
摘要
Seismic noise in both translational and angular degrees of freedom poses significant challenges to highprecision measurements. To mitigate low-frequency seismic noise coupling, active vibration-isolation platforms have been developed, in which a combination of low-noise and single- or multiple-degreeof-freedom seismometers play a critical role. This paper presents the design and performance evaluation of a four-degree-of-freedom (4D) seismometer based on a single flexure inverted pendulum within a 15cm cube. This seismometer employs a differential capacitive sensing scheme to measure the motion of a test mass, similar to that used in the Laser Interferometer Space Antenna gravitational-wave detector. Two with an optimal translational noise floor of 2 x 10-10 m/s2/root Hz around 1 Hz. In the 4D mode, a single sensing modes are employed: the 2D and 4D modes. In the 2D mode, translational motions are measured, seismometer can measure both translational and angular motion, whereas two spatially separated xyz seismometers would typically be employed; however, the angular sensitivity is limited by the compactness of the seismometer and the intrinsic stiffness of the flexure, which is left for future optimization.
引用
收藏
页数:12
相关论文
共 22 条
[1]   In-depth analysis of LISA Pathfinder performance results: Time evolution, noise projection, physical models, and implications for LISA [J].
Armano, M. ;
Audley, H. ;
Baird, J. ;
Binetruy, P. ;
Born, M. ;
Bortoluzzi, D. ;
Castelli, E. ;
Cavalleri, A. ;
Cesarini, A. ;
Chiavegato, V. ;
Cruise, A. M. ;
Dal Bosco, D. ;
Danzmann, K. ;
Silva, M. De Deus ;
Diepholz, I. ;
Dixon, G. ;
Dolesi, R. ;
Ferraioli, L. ;
Ferroni, V. ;
Fitzsimons, E. D. ;
Freschi, M. ;
Gesa, L. ;
Giardini, D. ;
Gibert, F. ;
Giusteri, R. ;
Grimani, C. ;
Grzymisch, J. ;
Harrison, I. ;
Hartig, M. S. ;
Heinzel, G. ;
Hewitson, M. ;
Hollington, D. ;
Hoyland, D. ;
Hueller, M. ;
Inchauspe, H. ;
Jennrich, O. ;
Jetzer, P. ;
Johlander, B. ;
Karnesis, N. ;
Kaune, B. ;
Korsakova, N. ;
Killow, C. J. ;
Lobo, J. A. ;
Lopez-Zaragoza, J. P. ;
Maarschalkerweerd, R. ;
Mance, D. ;
Martin, V. ;
Martin-Polo, L. ;
Martin-Porqueras, F. ;
Martino, J. .
PHYSICAL REVIEW D, 2024, 110 (04)
[2]   Nano-Newton electrostatic force actuators for femto-Newton-sensitive measurements: System performance test in the LISA Pathfinder mission [J].
Armano, M. ;
Audley, H. ;
Baird, J. ;
Bassan, M. ;
Binetruy, P. ;
Born, M. ;
Bortoluzzi, D. ;
Castelli, E. ;
Cavalleri, A. ;
Cesarini, A. ;
Chiavegato, V ;
Cruise, A. M. ;
Dal Bosco, D. ;
Danzmann, K. ;
Silva, M. De Deus ;
De Rosa, R. ;
Di Fiore, L. ;
Diepholz, I. ;
Dixon, G. ;
Dolesi, R. ;
Ferraioli, L. ;
Ferroni, V. ;
Fitzsimons, E. D. ;
Freschi, M. ;
Gesa, L. ;
Giardini, D. ;
Gibert, F. ;
Giusteri, R. ;
Grado, A. ;
Grimani, C. ;
Grzymisch, J. ;
Harrison, I. ;
Hartig, M. S. ;
Heinzel, G. ;
Hewitson, M. ;
Hollington, D. ;
Hoyland, D. ;
Hueller, M. ;
Inchauspe, H. ;
Jennrich, O. ;
Jetzer, P. ;
Johlander, B. ;
Karnesis, N. ;
Kaune, B. ;
Korsakova, N. ;
Killow, C. J. ;
Liu, L. ;
Lobo, J. A. ;
Lopez-Zaragoza, J. P. ;
Maarschalkerweerd, R. .
PHYSICAL REVIEW D, 2024, 109 (10)
[3]   Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results [J].
Armano, M. ;
Audley, H. ;
Auger, G. ;
Baird, J. T. ;
Bassan, M. ;
Binetruy, P. ;
Born, M. ;
Bortoluzzi, D. ;
Brandt, N. ;
Caleno, M. ;
Carbone, L. ;
Cavalleri, A. ;
Cesarini, A. ;
Ciani, G. ;
Congedo, G. ;
Cruise, A. M. ;
Danzmann, K. ;
de Deus Silva, M. ;
De Rosa, R. ;
Diaz-Aguilo, M. ;
Di Fiore, L. ;
Diepholz, I. ;
Dixon, G. ;
Dolesi, R. ;
Dunbar, N. ;
Ferraioli, L. ;
Ferroni, V. ;
Fichter, W. ;
Fitzsimons, E. D. ;
Flatscher, R. ;
Freschi, M. ;
Marin, A. F. Garcia ;
Marirrodriga, C. Garcia ;
Gerndt, R. ;
Gesa, L. ;
Gibert, F. ;
Giardini, D. ;
Giusteri, R. ;
Guzman, F. ;
Grado, A. ;
Grimani, C. ;
Grynagier, A. ;
Grzymisch, J. ;
Harrison, I. ;
Heinzel, G. ;
Hewitson, M. ;
Hollington, D. ;
Hoyland, D. ;
Hueller, M. ;
Inchauspe, H. .
PHYSICAL REVIEW LETTERS, 2016, 116 (23)
[4]  
Brotzer A., 2024, Seismol. Res. Lett., V95, P1858
[5]   Sensors and actuators for the Advanced LIGO mirror suspensions [J].
Carbone, L. ;
Aston, S. M. ;
Cutler, R. M. ;
Freise, A. ;
Greenhalgh, J. ;
Heefner, J. ;
Hoyland, D. ;
Lockerbie, N. A. ;
Lodhia, D. ;
Robertson, N. A. ;
Speake, C. C. ;
Strain, K. A. ;
Vecchio, A. .
CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (11)
[6]   Compact inertial sensors for measuring external disturbances of physics experiments [J].
Carter, Jonathan J. ;
Birckigt, Pascal ;
Gerberding, Oliver ;
Koehlenbeck, Sina M. .
SCIENTIFIC REPORTS, 2024, 14 (01)
[7]   Designing gram-scale resonators for precision inertial sensors [J].
Carter, Jonathan J. ;
Birckigt, Pascal ;
Gerberding, Oliver ;
Koehlenbeck, Sina M. .
PHYSICAL REVIEW APPLIED, 2024, 22 (01)
[8]   High sensitivity optomechanical reference accelerometer over 10 kHz [J].
Cervantes, Felipe Guzman ;
Kumanchik, Lee ;
Pratt, Jon ;
Taylor, Jacob M. .
APPLIED PHYSICS LETTERS, 2014, 104 (22)
[9]   An interferometric inertial sensor for low-frequency seismic isolation [J].
Ding, Binlei ;
Zhao, Guoying ;
Watchi, Jennifer ;
Sider, Ameer ;
Collette, Christophe .
SENSORS AND ACTUATORS A-PHYSICAL, 2022, 335
[10]   Optomechanical reference accelerometer [J].
Gerberding, O. ;
Cervantes, F. Guzman ;
Melcher, J. ;
Pratt, J. R. ;
Taylor, J. M. .
METROLOGIA, 2015, 52 (05) :654-665