Backstepping Controller for Nanopositioning in Piezoelectric Actuators with ANN Hysteresis Compensation

被引:0
作者
del Rio, Asier [1 ]
Barambones, Oscar [1 ]
Artetxe, Eneko [1 ]
Uralde, Jokin [1 ]
Calvo, Isidro [1 ]
机构
[1] Univ Basque Country UPV EHU, Fac Engn Vitoria Gasteiz, Dept Syst Engn & Automat Control, Vitoria 01006, Spain
关键词
piezoelectric actuator; backstepping controller; artificial neural network; hysteresis compensation; intelligent control;
D O I
10.3390/mi16040469
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Piezoelectric actuators (PEAs) are widely used in high-precision applications but suffer from nonlinear hysteresis effects that degrade positioning accuracy. To address this challenge, this study presents a backstepping controller with an Artificial Neural Network (ANN)-based feedforward compensation scheme to enhance trajectory tracking performance. The ANN compensates for the hysteresis effects, while the backstepping strategy ensures robust reference tracking. The proposed controller is validated through real-time experiments using a piezoelectric actuator system. Comparative analysis with a conventional PID controller demonstrates the superiority of the backstepping approach, achieving significantly lower tracking errors across different reference signals and frequencies. Error metrics have been employed to confirm the improved accuracy and robustness of the proposed method. These findings highlight the effectiveness of the proposed ANN-enhanced backstepping control in overcoming hysteresis-related challenges in precision positioning applications.
引用
收藏
页数:16
相关论文
共 32 条
[1]   Compensation method for complex hysteresis characteristics on piezoelectric actuator based on separated level-loop Prandtl-Ishlinskii model [J].
An, Dong ;
Li, Ji ;
Yang, Yixiao ;
Xu, Ying ;
Shao, Meng ;
Li, Yupeng .
NONLINEAR DYNAMICS, 2022, 109 (04) :2479-2497
[2]   Combined Control for a Piezoelectric Actuator Using a Feed-Forward Neural Network and Feedback Integral Fast Terminal Sliding Mode Control [J].
Artetxe, Eneko ;
Barambones, Oscar ;
Calvo, Isidro ;
del Rio, Asier ;
Uralde, Jokin .
MICROMACHINES, 2024, 15 (06)
[3]   In-Plane AlN-based Actuator: Toward a New Generation of Piezoelectric MEMS [J].
Bespalova, Kristina ;
Nieminen, Tarmo ;
Gabrelian, Artem ;
Ross, Glenn ;
Paulasto-Krockel, Mervi .
ADVANCED ELECTRONIC MATERIALS, 2023, 9 (08)
[4]   Application of dense neural networks for manifold-based modeling of flame-wall interactions [J].
Bissantz, Julian ;
Karpowski, Jeremy ;
Steinhausen, Matthias ;
Luo, Yujuan ;
Ferraro, Federica ;
Scholtissek, Arne ;
Hasse, Christian ;
Vervisch, Luc .
APPLICATIONS IN ENERGY AND COMBUSTION SCIENCE, 2023, 13
[5]   Fuzzy-Based Adaptive Reliable Motion Control of a Piezoelectric Nanopositioning System [J].
Chen, Liheng ;
Xu, Qingsong .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2024, 32 (08) :4413-4425
[6]   Classical Bouc-Wen Hysteresis Modeling and Force Control of a Piezoelectric Robotic Hand Manipulating a Deformable Object [J].
Flores, Gerardo ;
Rakotondrabe, Micky .
IEEE CONTROL SYSTEMS LETTERS, 2023, 7 :2413-2418
[7]   Dahl Hysteresis Modeling and Position Control of Piezoelectric Digital Manipulator [J].
Flores, Gerardo ;
Rakotondrabe, Micky .
IEEE CONTROL SYSTEMS LETTERS, 2023, 7 :1021-1026
[8]   Hysteresis modeling and analysis of piezoelectric actuators using a modified LuGre model at different preloads and frequencies [J].
Gan, Jinqiang ;
Zhang, Xudong ;
Xu, Jie ;
Shan, Yilin ;
Zhou, Peng ;
Wu, Chuan .
SMART MATERIALS AND STRUCTURES, 2024, 33 (05)
[9]   Lever Mechanism for Diaphragm-Type Vibrators to Enhance Vibrotactile Intensity [J].
Hachisu, Taku ;
Kajiura, Masayuki ;
Takeshita, Toshihiro ;
Takei, Yusuke ;
Kobayashi, Takeshi ;
Konyo, Masashi .
IEEE TRANSACTIONS ON HAPTICS, 2024, 17 (01) :20-25
[10]   Theoretical modeling and experimental investigation on a novel screwed-type piezoelectric focusing mechanism for space cameras [J].
Jia, Botao ;
Wang, Liang ;
Wang, Ruifeng ;
Jin, Jiamei ;
Wu, Dawei .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 171