Mesoscopic Theory for Coupled Stochastic Oscillators

被引:0
作者
Buendia, Victor [1 ,2 ,3 ]
机构
[1] Univ Tubingen, Dept Comp Sci, D-72076 Tubingen, Germany
[2] Max Planck Inst Biol Cybernet, D-72076 Tubingen, Germany
[3] Bocconi Univ, Dept Comp Sci, I-20136 Milan, Italy
关键词
SYNCHRONIZATION;
D O I
10.1103/PhysRevLett.134.197201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The celebrated Ott-Antonsen Ansatz for coupled oscillators provides a useful framework for working with deterministic systems in the thermodynamic limit, but it fails to capture many features of stochastic systems. Several solutions have been recently proposed to accurately describe the behavior of the order parameters in coupled oscillator systems. However, a fluctuating description of such order parameters has been still elusive. In this Letter, I construct for the first time a general mesoscopic description of finite-size populations of oscillators subject to white noise. The theory allows one to derive Langevin equations for the Kuramoto-Daido order parameters, opening the door to study features of synchronization phase transitions and finite-size effects, which were inaccessible before. The analysis of the fluctuations in the stochastic Kuramoto model uncovered highly accurate, closed analytical expressions for the average Kuramoto order parameter which outperforms previous approaches.
引用
收藏
页数:7
相关论文
共 40 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]   Dynamical field theory for glass-forming liquids, self-consistent resummations and time-reversal symmetry [J].
Andreanov, A. ;
Biroli, G. ;
Lefevre, A. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2006,
[3]  
[Anonymous], Supplemental Material, DOI [10.1103/PhysRevLett.134.197201, DOI 10.1103/PHYSREVLETT.134.197201]
[4]  
Binney J. J., 2001, The Theory of Critical Phenomena: An Introduction to the Renormalization Group
[5]   Hybrid-type synchronization transitions: Where incipient oscillations, scale-free avalanches, and bistability live together [J].
Buendia, Victor ;
Villegas, Pablo ;
Burioni, Raffaella ;
Munoz, Miguel A. .
PHYSICAL REVIEW RESEARCH, 2021, 3 (02)
[6]   Functional connectivity dynamically evolves on multiple time-scales over a static structural connectome: Models and mechanisms [J].
Cabral, Joana ;
Kringelbach, Morten L. ;
Deco, Gustavo .
NEUROIMAGE, 2017, 160 :84-96
[7]   Hierarchy of Exact Low-Dimensional Reductions for Populations of Coupled Oscillators [J].
Cestnik, Rok ;
Pikovsky, Arkady .
PHYSICAL REVIEW LETTERS, 2022, 128 (05)
[8]   Stability diagram for the forced Kuramoto model [J].
Childs, Lauren M. ;
Strogatz, Steven H. .
CHAOS, 2008, 18 (04)
[9]   Feedback Loops in Opinion Dynamics of Agent-Based Models with Multiplicative Noise [J].
Conrad, Natasa Djurdjevac ;
Koeppl, Jonas ;
Djurdjevac, Ana .
ENTROPY, 2022, 24 (10)
[10]   Distinct criticality of phase and amplitude dynamics in the resting brain [J].
Daffertshofer, Andreas ;
Ton, Robert ;
Kringelbach, Morten L. ;
Woolrich, Mark ;
Deco, Gustavo .
NEUROIMAGE, 2018, 180 :442-447