Extended SDD†1 matrices and error bounds for linear complementarity problems

被引:0
作者
Ran, Wenwen [1 ]
Wang, Feng [1 ]
机构
[1] Guizhou Minzu Univ, Coll Data Sci & Informat Engn, Guiyang 550025, Guizhou, Peoples R China
关键词
ESDD dagger(1 )matrices; SDD1; matrices; H-matrices; Infinity norm bounds; Error bounds; Linear complementarity problems; INFINITY NORM; NEKRASOV MATRICES; INVERSE; LOCALIZATION; TENSORS; SDD;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a new subclass of H-matrices named extendedSDD dagger(1)(for shortly,ESDD dagger(1)) matrices, discuss the relationships among ESDD dagger(1 )matrices and other subclasses of H-matrices. Based on the properties of ESDD dagger(1 )matrices, infinity norm upper bounds for the inverse ofESDD dagger 1matrices are presented. As an application, error bound for linear complementarity problems of ESDD dagger(1 )matrices is provided. Numerical examples show that the obtained results are better than some existing bounds.
引用
收藏
页码:605 / 630
页数:26
相关论文
共 33 条
[1]  
Berman Abraham, 1994, NONNEGATIVE MATRICES, DOI DOI 10.1137/1.9781611971262
[2]  
Bru R, 2006, ELECTRON J LINEAR AL, V15, P201
[3]   Infinity norm upper bounds for the inverse of S DD1 matrices [J].
Chen, Xiaoyong ;
Li, Yating ;
Liu, Liang ;
Wang, Yaqiang .
AIMS MATHEMATICS, 2022, 7 (05) :8847-8860
[4]   Computation of error bounds for P-matrix linear complementarity problems [J].
Chen, XJ ;
Xiang, SH .
MATHEMATICAL PROGRAMMING, 2006, 106 (03) :513-525
[5]   CKV-type matrices with applications [J].
Cvetkovic, Dragana Lj. ;
Cvetkovic, Ljiljana ;
Li, Chaoqian .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 608 :158-184
[6]   H-matrix theory vs. eigenvalue localization [J].
Cvetkovic, Ljiljana .
NUMERICAL ALGORITHMS, 2006, 42 (3-4) :229-245
[7]  
Dai PF, 2023, COMPUT APPL MATH, V42, DOI 10.1007/s40314-022-02165-x
[8]   M-tensors and nonsingular M-tensors [J].
Ding, Weiyang ;
Qi, Liqun ;
Wei, Yimin .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (10) :3264-3278
[9]   ON CVETKOVI′C-KOSTI′C-VARGA TYPE MATRICES [J].
Gao, Lei ;
Li, Chaoqian .
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2023, 58 :244-270
[10]   A comparison of error bounds for linear complementarity problems of H-matrices [J].
Garcia-Esnaola, M. ;
Pena, J. M. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (05) :956-964