Significantly reduced thermal conductivity through dual-site high-entropy strategy in rare-earth hexaaluminates

被引:0
作者
Zhou, Lin [1 ]
Liu, Ji-Xuan [1 ]
Peng, Pai [1 ]
Zhang, Qinghong [1 ]
Zhang, Guo-Jun [1 ]
机构
[1] Donghua Univ, Inst Funct Mat, Coll Mat Sci & Engn, State Key Lab Adv Fiber Mat, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermal barrier coating; High-entropy ceramics; Rare-earth hexaaluminate; Mechanical property; Thermal property; THERMOPHYSICAL PROPERTIES; LNMGAL(11)O(19) LN; BARRIER MATERIAL; MAGNETOPLUMBITE; LAMGAL11O19; NIOBATES; BEHAVIOR; GD; ND; LA;
D O I
10.1016/j.ceramint.2025.01.520
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
LaMgAl11O19 (LMA) is an important thermal barrier coating (TBC) material due to its remarkable fracture toughness, excellent sintering resistance and better thermal stability, but the relatively high thermal conductivity limits its application. In this work, single-site high-entropy rare-earth hexaaluminates (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)MgAl11O19 (HE-L), La(Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)Al11O19 (HE-M) and dual-site high-entropy rare-earth hexaaluminates (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)(Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)Al11O19 (HE-LM) ceramics were successfully fabricated by solid-state reaction sintering, and their phase evolution process, mechanical and thermal properties were analyzed. The phase evolution process for the high-entropy rare-earth hexaaluminate is similar to that of the single-component LMA. The dual-site HE-LM ceramic exhibits a significant increase in Vickers hardness (13.63 GPa), fracture toughness (4.18 MPa.m1/2) and a decrease in thermal conductivity (2.02-2.55 W center dot m- 1 center dot K- 1, 25-1100 degrees C) as compared to the LMA ceramics. This work demonstrates the excellent mechanical and thermophysical properties of the HE-LM ceramics. It is expected that the high-entropy rare-earth hexaaluminates will be a promising candidate for TBC.
引用
收藏
页码:17473 / 17483
页数:11
相关论文
共 46 条
[1]   High entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12: A novel high temperature stable thermal barrier material [J].
Chen, Heng ;
Zhao, Zifan ;
Xiang, Huimin ;
Dai, Fu-Zhi ;
Xu, Wei ;
Sun, Kuang ;
Liu, Jiachen ;
Zhou, Yanchun .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2020, 48 (48) :57-62
[2]   Epitaxial growth and cracking of highly tough 7YSZ splats by thermal spray technology [J].
Chen, Lin ;
Yang, Guan-Jun .
JOURNAL OF ADVANCED CERAMICS, 2018, 7 (01) :17-29
[3]   Thermal aging behavior of plasma sprayed LaMgAl11O19 thermal barrier coating [J].
Chen, Xiaolong ;
Zhao, Yu ;
Huang, Wenzhi ;
Ma, Hongmei ;
Zou, Binglin ;
Wang, Ying ;
Cao, Xueqiang .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2011, 31 (13) :2285-2294
[4]   Thermal barrier coating materials [J].
Clarke, David R. ;
Phillpot, Simon R. .
MATERIALS TODAY, 2005, 8 (06) :22-29
[5]   Thermophysical properties of a novel high entropy hafnate ceramic [J].
Cong, Longkang ;
Zhang, Shouyang ;
Gu, Shengyue ;
Li, Wei .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 85 :152-157
[6]   Effects of surface roughness on CMAS corrosion behavior for thermal barrier coating applications [J].
Guo, Lei ;
Li, Guang ;
Gan, Zhilin .
JOURNAL OF ADVANCED CERAMICS, 2021, 10 (03) :472-481
[7]   Microstructure and mechanical properties of reactive hot-pressed LaMgAl11O19 ceramics [J].
Guo, Shuqi ;
Okuma, Gaku ;
Naito, Kimiyoshi ;
Kakisawa, Hideki .
CERAMICS INTERNATIONAL, 2025, 51 (03) :4058-4066
[8]   Mechanical and thermal properties of LaMgAl11O19 [J].
Jiang, B. ;
Fang, M. H. ;
Huang, Z. H. ;
Liu, Y. G. ;
Peng, P. ;
Zhang, J. .
MATERIALS RESEARCH BULLETIN, 2010, 45 (10) :1506-1508
[9]  
KUBASCHEWSKI O, 1993, MAT THERMOCHEMISTRY
[10]   THERMAL-EXPANSION BEHAVIOR OF SOME RARE-EARTH-OXIDE PYROCHLORES [J].
KUTTY, KVG ;
RAJAGOPALAN, S ;
MATHEWS, CK ;
VARADARAJU, UV .
MATERIALS RESEARCH BULLETIN, 1994, 29 (07) :759-766