Research on Application of Electromagnetic Environment Data Warehouse Based on Big Data

被引:0
作者
Wang, Jie [1 ]
Li, Zhenxing [1 ,2 ]
Zhou, Liping [3 ]
机构
[1] China Elect Corp, Res Inst 22, Shenzhen, Peoples R China
[2] Xiamen Univ, Xiamen, Peoples R China
[3] Qingdao Presch Educ Coll, Qingdao, Peoples R China
关键词
Electromagnetic Environment; Data Warehouse; Big Data;
D O I
10.4018/IJDWM.373715
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The widespread use of electromagnetic space utilization technology across various fields- including maritime, terrestrial, aeronautical, orbital, electrical, and telecommunications-has generated vast amounts of electromagnetic environment data. To manage challenges, such as the storage of large raw datasets, data discrepancies, isolated data across multiple pathways, and low data value density, a big data-based electromagnetic environment data warehouse is proposed. This warehouse standardizes data from diverse sources, integrates and reconstructs it according to business themes, and uses a mix of relational and non-relational databases for storage. It meets the needs for high data reliability, fast access, and massive storage capacity, offering a solution to data overload while supporting data mining and knowledge discovery in the electromagnetic field.
引用
收藏
页数:21
相关论文
共 19 条
[11]   基于协同学习的频谱智能感知方法 [J].
潘成胜 ;
蔡韧 ;
石怀峰 ;
施建锋 ;
王钰玥 .
电讯技术, 2023, 63 (12) :1839-1846
[12]  
Tian B., 2017, Computer Science, V44
[13]  
Wang R., 2023, Software, V44, P67, DOI [10.3969/j.issn.1003-6970.2023.11.016, DOI 10.3969/J.ISSN.1003-6970.2023.11.016]
[14]  
Wang Y., 2020, Telecom Power Technology, V37, P265, DOI [10.1016/j.powtec.2019.12.043, DOI 10.1016/J.POWTEC.2019.12.043]
[15]  
Yang Q., 2020, China Radio, V3, P58
[16]  
Yang X., 2023, Research on the storage of large-scale satellite data and data service system development of Zhangheng-1 satellite, DOI [10.27899/d.cnki.gfzkj.2023.000006, DOI 10.27899/D.CNKI.GFZKJ.2023.000006]
[17]  
Zhang W., 2020, Computer Knowledge and Technology, V16, P10, DOI [10.14004/j.cnki.ckt.2020.0740, DOI 10.14004/J.CNKI.CKT.2020.0740]
[18]  
Zhang Y. T., 2024, Power Big Data, V27, P1, DOI [10.19317/j.cnki.1008-083x.2024.03.001, DOI 10.19317/J.CNKI.1008-083X.2024.03.001]
[19]  
Zheng Z., 2017, Master's thesis