ZERNIPAX: A fast and accurate Zernike polynomial calculator in Python']Python

被引:0
作者
Elmacioglu, Yigit Gunsur [1 ]
Conlin, Rory [2 ]
Dudt, Daniel W. [3 ]
Panici, Dario [1 ]
Kolemen, Egemen [1 ,4 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Univ Maryland, College Pk, MD 20742 USA
[3] Thea Energy, Kearny, NJ 07032 USA
[4] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
关键词
Zernike polynomials; Optics; Astrophysics; Spectral simulations; !text type='Python']Python[!/text; JAX; CPU/GPU computing; FAST COMPUTATION; IMPROVED FORM; ALGORITHMS; EXPANSION;
D O I
10.1016/j.amc.2025.129534
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Zernike polynomials serve as an orthogonal basis on the unit disc, and have proven to be effective in optics simulations, astrophysics, and more recently in plasma simulations. Unlike Bessel functions, Zernike polynomials are inherently finite and smooth at the disc center (r=0), ensuring continuous differentiability along the axis. This property makes them particularly suitable for simulations, requiring no additional handling at the origin. We developed ZERNIPAX, an open-source Python package capable of utilizing CPU/GPUs, leveraging Google's JAX package and available on GitHub as well as the Python software repository PyPI. Our implementation of the recursion relation between Jacobi polynomials significantly improves computation time compared to alternative methods by use of parallel computing while still performing more accurately for high-mode numbers.
引用
收藏
页数:11
相关论文
共 36 条
[21]  
Menduina A., Zern
[22]   Zernike polynomials and their applications [J].
Niu, Kuo ;
Tian, Chao .
JOURNAL OF OPTICS, 2022, 24 (12)
[23]  
Novak P., 2013, Efficient and Stable Numerical Method for Evaluation of Zernike Polynomials and Their Cartesian Derivatives, DOI [10.1117/12.2020389, DOI 10.1117/12.2020389]
[24]   Numerical stability of fast computation algorithms of Zernike moments [J].
Papakostas, G. A. ;
Boutalis, Y. S. ;
Papaodysseus, C. N. ;
Fragoulis, D. K. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 195 (01) :326-345
[25]   ALGORITHM FOR COMPUTATION OF ZERNIKE POLYNOMIALS EXPANSION COEFFICIENTS [J].
PRATA, A ;
RUSCH, WVT .
APPLIED OPTICS, 1989, 28 (04) :749-754
[26]   A parallel recurrence method for the fast computation of Zernike moments [J].
Qin, Huafeng ;
Qin, Lan ;
Xue, Lian ;
Yu, Chengbo .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) :1549-1561
[27]   Coordinate parameterisation and spectral method optimisation for Beltrami field solver in stellarator geometry [J].
Qu, Z. S. ;
Pfefferle, D. ;
Hudson, S. R. ;
Baillod, A. ;
Kumar, A. ;
Dewar, R. L. ;
Hole, M. J. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (12)
[28]   Modeling ophthalmic surfaces using Zernike, Bessel and Chebyshev type functions [J].
Rodrigues, M. M. ;
Rosa, A. ;
Vieira, N. ;
Murta, J. N. .
32ND INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS (GROUP32), 2019, 1194
[29]   Using corneal height maps and polynomial decomposition to determine corneal aberrations [J].
Schwiegerling, J ;
Greivenkamp, JE .
OPTOMETRY AND VISION SCIENCE, 1997, 74 (11) :906-916
[30]   REPRESENTATION OF VIDEOKERATOSCOPIC HEIGHT DATA WITH ZERNIKE POLYNOMIALS [J].
SCHWIEGERLING, J ;
GREIVENKAMP, JE ;
MILLER, JM .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1995, 12 (10) :2105-2113