ZERNIPAX: A fast and accurate Zernike polynomial calculator in Python']Python

被引:0
作者
Elmacioglu, Yigit Gunsur [1 ]
Conlin, Rory [2 ]
Dudt, Daniel W. [3 ]
Panici, Dario [1 ]
Kolemen, Egemen [1 ,4 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Univ Maryland, College Pk, MD 20742 USA
[3] Thea Energy, Kearny, NJ 07032 USA
[4] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
关键词
Zernike polynomials; Optics; Astrophysics; Spectral simulations; !text type='Python']Python[!/text; JAX; CPU/GPU computing; FAST COMPUTATION; IMPROVED FORM; ALGORITHMS; EXPANSION;
D O I
10.1016/j.amc.2025.129534
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Zernike polynomials serve as an orthogonal basis on the unit disc, and have proven to be effective in optics simulations, astrophysics, and more recently in plasma simulations. Unlike Bessel functions, Zernike polynomials are inherently finite and smooth at the disc center (r=0), ensuring continuous differentiability along the axis. This property makes them particularly suitable for simulations, requiring no additional handling at the origin. We developed ZERNIPAX, an open-source Python package capable of utilizing CPU/GPUs, leveraging Google's JAX package and available on GitHub as well as the Python software repository PyPI. Our implementation of the recursion relation between Jacobi polynomials significantly improves computation time compared to alternative methods by use of parallel computing while still performing more accurately for high-mode numbers.
引用
收藏
页数:11
相关论文
共 36 条
[1]   Improved GRAVITY astrometric accuracy from modeling optical aberrations [J].
Abuter, R. ;
Amorim, A. ;
Bauboeck, M. ;
Berger, J. P. ;
Bonnet, H. ;
Brandner, W. ;
Clenet, Y. ;
Davies, R. ;
de Zeeuw, P. T. ;
Dexter, J. ;
Dallilar, Y. ;
Drescher, A. ;
Eckart, A. ;
Eisenhauer, F. ;
Schreiber, N. M. Foerster ;
Garcia, P. ;
Gao, F. ;
Gendron, E. ;
Genzel, R. ;
Gillessen, S. ;
Habibi, M. ;
Haubois, X. ;
Heissel, G. ;
Henning, T. ;
Hippler, S. ;
Horrobin, M. ;
Jimenez-Rosales, A. ;
Jochum, L. ;
Jocou, L. ;
Kaufer, A. ;
Kervella, P. ;
Lacour, S. ;
Lapeyrere, V ;
Le Bouquin, J-B ;
Lena, P. ;
Lutz, D. ;
Nowak, M. ;
Ott, T. ;
Paumard, T. ;
Perraut, K. ;
Perrin, G. ;
Pfuhl, O. ;
Rabien, S. ;
Rodriguez-Coira, G. ;
Shangguan, J. ;
Shimizu, T. ;
Scheithauer, S. ;
Stadler, J. ;
Straub, O. ;
Straubmeier, C. .
ASTRONOMY & ASTROPHYSICS, 2021, 647
[2]  
Al-Rawi M, 2023, Arxiv, DOI [arXiv:2304.14492, 10.48550/arXiv.2304.14492, DOI 10.48550/ARXIV.2304.14492]
[3]  
Antonello J., Zernike
[4]   Zernike power spectra of clear and cloudy light-polluted urban night skies [J].
Bara, Salvador ;
Tilve, Victor ;
Nievas, Miguel ;
Sanchez de Miguel, Alejandro ;
Zamorano, Jaime .
APPLIED OPTICS, 2015, 54 (13) :4120-4129
[5]   Zernike analysis of all-sky night brightness maps [J].
Bara, Salvador ;
Nievas, Miguel ;
Sanchez de Miguel, Alejandro ;
Zamorano, Jaime .
APPLIED OPTICS, 2014, 53 (12) :2677-2686
[6]  
Born M., 1999, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, DOI DOI 10.1016/J.CJA.2020.12.024
[7]   Comparing seven spectral methods for interpolation and for solving the Poisson equation in a disk: Zernike polynomials, Logan-Shepp ridge polynomials, Chebyshev-Fourier Series, cylindrical Robert functions, Bessel-Fourier expansions, square-to-disk conformal mapping and radial basis functions [J].
Boyd, John P. ;
Yu, Fu .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (04) :1408-1438
[8]  
Bradbury James., 2018, JAX: composable transformations of Python+NumPy programs
[9]   High-precision and fast computation of Jacobi-Fourier moments for image description [J].
Camacho-Bello, C. ;
Toxqui-Quitl, C. ;
Padilla-Vivanco, A. ;
Baez-Rojas, J. J. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2014, 31 (01) :124-134
[10]   The Three Hundred project: quest of clusters of galaxies morphology and dynamical state through Zernike polynomials [J].
Capalbo, Valentina ;
De Petris, Marco ;
De Luca, Federico ;
Cui, Weiguang ;
Yepes, Gustavo ;
Knebe, Alexander ;
Rasia, Elena .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 503 (04) :6155-6169