Sinc approximation method for solving system of singularly perturbed parabolic convection-diffusion equations

被引:0
作者
Barzehkar, N. [1 ]
Barati, A. [1 ]
Jalilian, R. [1 ]
机构
[1] Razi Univ, Fac Sci, Dept Math, Kermanshah, Iran
关键词
Convection-diffusion equation; Sinc-collocation method; Convergence analysis; NUMERICAL-METHOD; SCHEME; MESH;
D O I
10.1016/j.apnum.2025.05.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the Sinc-collocation method is used to solve singularly perturbed parabolic convection-diffusion system. The convergence analysis of the proposed method is discussed, it is shown that the convergence of the method is at an exponential rate in space dimension. Finally, some numerical results are given to validate the theoretical results. Also, the obtained results show the accuracy and efficiency of the method compared with other methods.
引用
收藏
页码:127 / 139
页数:13
相关论文
共 31 条
[1]   A parameter robust numerical method for a system of two singularly perturbed convection-diffusion equations [J].
Bellew, S ;
O'Riordan, E .
APPLIED NUMERICAL MATHEMATICS, 2004, 51 (2-3) :171-186
[2]   SINC-COLLOCATION METHODS FOR 2-POINT BOUNDARY-VALUE-PROBLEMS [J].
BIALECKI, B .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1991, 11 (03) :357-375
[3]   A splitting uniformly convergent method for one-dimensional parabolic singularly perturbed convection-diffusion systems [J].
Clavero, C. ;
Jorge, J. C. .
APPLIED NUMERICAL MATHEMATICS, 2023, 183 :317-332
[4]   A simpler analysis of a hybrid numerical method for time-dependent convection-diffusion problems [J].
Clavero, C. ;
Gracia, J. L. ;
Stynes, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (17) :5240-5248
[5]   A uniformly convergent scheme on a nonuniform mesh for convection-diffusion parabolic problems [J].
Clavero, C ;
Jorge, JC ;
Lisbona, F .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 154 (02) :415-429
[6]   A fractional step method on a special mesh for the resolution of multidimensional evolutionary convection-diffusion problems [J].
Clavero, C ;
Jorge, JC ;
Lisbona, F ;
Shishkin, GI .
APPLIED NUMERICAL MATHEMATICS, 1998, 27 (03) :211-231
[7]   Higher order accurate approximations on equidistributed meshes for boundary layer originated mixed type reaction diffusion systems with multiple scale nature [J].
Das, Pratibhamoy ;
Rana, Subrata ;
Vigo-Aguiar, Jesus .
APPLIED NUMERICAL MATHEMATICS, 2020, 148 :79-97
[9]   Optimal error estimate using mesh equidistribution technique for singularly perturbed system of reaction-diffusion boundary-value problems [J].
Das, Pratibhamoy ;
Natesan, Srinivasan .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 249 :265-277
[10]   A uniformly convergent hybrid scheme for singularly perturbed system of reaction-diffusion Robin type boundary-value problems [J].
Das P. ;
Natesan S. .
Journal of Applied Mathematics and Computing, 2013, 41 (1-2) :447-471