Detail-Preserving Diffusion Models for Low-Light Image Enhancement

被引:0
作者
Huang, Yan [1 ]
Liao, Xiaoshan [1 ]
Liang, Jinxiu [2 ,3 ]
Shi, Boxin [2 ,3 ]
Xu, Yong [1 ,4 ]
Le Callet, Patrick [5 ,6 ]
机构
[1] South China Univ Technol, Sch Comp Sci & Engn, Guangdong Prov Key Lab Multimodal Big Data Intelli, Guangzhou 510006, Peoples R China
[2] Peking Univ, Sch Comp Sci, State Key Lab Multimedia Informat Proc, Beijing 100871, Peoples R China
[3] Peking Univ, Natl Engn Res Ctr Visual Technol, Sch Comp Sci, Beijing 100871, Peoples R China
[4] Pazhou Lab, Guangzhou 510005, Peoples R China
[5] Nantes Univ, Ecole Cent Nantes, CNRS, LS2N,UMR 6004, F-44321 Nantes, France
[6] Inst Univ France IUF, F-75005 Paris, France
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Noise; Diffusion models; Noise reduction; Image enhancement; Training; Lighting; Circuits and systems; Mathematical models; Image reconstruction; Integrated circuit modeling; Low-light image enhancement; conditional patch-based diffusion models; detail-preserving; reverse diffusion-based reconstruction; multiscale ensemble scheme; FRAMEWORK;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Existing diffusion models for low-light image enhancement typically incrementally remove noise introduced during the forward diffusion process using a denoising loss, with the process being conditioned on input low-light images. While these models demonstrate remarkable abilities in generating realistic high-frequency details, they often struggle to restore fine details that are faithful to the input. To address this, we present a novel detail-preserving diffusion model for realistic and faithful low-light image enhancement. Our approach integrates a size-agnostic diffusion process with a reverse process reconstruction loss, significantly enhancing the fidelity of enhanced images to their low-light counterparts and enabling more accurate recovery of fine details. To ensure the preservation of region- and content-aware details, we employ an efficient noise estimation network with a simplified channel-spatial attention mechanism. Additionally, we propose a multiscale ensemble scheme to maintain detail fidelity across diverse illumination regions. Comprehensive experiments on eight benchmark datasets demonstrate that our method achieves state-of-the-art results compared to over twenty existing methods in terms of both perceptual quality (LPIPS) and distortion metrics (PSNR and SSIM). The code is available at: https://github.com/CSYanH/DePDiff.
引用
收藏
页码:3396 / 3409
页数:14
相关论文
共 72 条
[1]   Retinexformer: One-stage Retinex-based Transformer for Low-light Image Enhancement [J].
Cai, Yuanhao ;
Bian, Hao ;
Lin, Jing ;
Wang, Haoqian ;
Timofte, Radu ;
Zhang, Yulun .
2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, :12470-12479
[2]   Simple Baselines for Image Restoration [J].
Chen, Liangyu ;
Chu, Xiaojie ;
Zhang, Xiangyu ;
Sun, Jian .
COMPUTER VISION, ECCV 2022, PT VII, 2022, 13667 :17-33
[3]   Cluster Analysis of DSC MRI, Dynamic Contrast-Enhanced MRI, and DWI Parameters Associated with Prognosis in Patients with Glioblastoma after Removal of the Contrast-Enhancing Component: A Preliminary Study [J].
Chung, H. ;
Seo, H. ;
Choi, S. H. ;
Park, C. -k. ;
Kim, T. M. ;
Park, S. -h. ;
Won, J. K. ;
Lee, J. H. ;
Lee, S. -t. ;
Lee, J. Y. ;
Hwang, I. ;
Kang, K. M. ;
Yun, T. J. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2022, 43 (11) :1559-1566
[4]   Parallel Diffusion Models of Operator and Image for Blind Inverse Problems [J].
Chung, Hyungjin ;
Kim, Jeongsol ;
Kim, Sehui ;
Ye, Jong Chul .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, :6059-6069
[5]  
Cui Z., 2022, P BMVC, P238
[6]   HALF WAVELET ATTENTION ON M-NET plus FOR LOW-LIGHT IMAGE ENHANCEMENT [J].
Fan, Chi-Mao ;
Liu, Tsung-Jung ;
Liu, Kuan-Hsien .
2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, :3878-3882
[7]   Multiscale Low-Light Image Enhancement Network With Illumination Constraint [J].
Fan, Guo-Dong ;
Fan, Bi ;
Gan, Min ;
Chen, Guang-Yong ;
Chen, C. L. Philip .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (11) :7403-7417
[8]   Learning a Simple Low-light Image Enhancer from Paired Low-light Instances [J].
Fu, Zhenqi ;
Yang, Yan ;
Tu, Xiaotong ;
Huang, Yue ;
Ding, Xinghao ;
Ma, Kai-Kuang .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, :22252-22261
[9]   Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement [J].
Guo, Chunle ;
Li, Chongyi ;
Guo, Jichang ;
Loy, Chen Change ;
Hou, Junhui ;
Kwong, Sam ;
Cong, Runmin .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :1777-1786
[10]   Cross-Image Disentanglement for Low-Light Enhancement in Real World [J].
Guo, Lanqing ;
Wan, Renjie ;
Yang, Wenhan ;
Kot, Alex C. ;
Wen, Bihan .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (04) :2550-2563