A Lesion-Fusion Neural Network for Multi-View Diabetic Retinopathy Grading

被引:3
作者
Luo, Xiaoling [1 ,2 ]
Xu, Qihao [3 ]
Wang, Zhihua [4 ]
Huang, Chao [5 ]
Liu, Chengliang
Jin, Xiaopeng [6 ]
Zhang, Jianguo [7 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[2] Guangdong Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
[3] Harbin Inst Technol, Biocomp Res Ctr, Shenzhen 518060, Peoples R China
[4] Shenzhen MSU BIT Univ, Guangdong Lab Machine Percept & Intelligent Comp, Shenzhen 518060, Peoples R China
[5] Sun Yat Sen Univ, Sch Cyber Sci & Technol, Shenzhen Campus, Shenzhen 518060, Peoples R China
[6] Shenzhen Technol Univ, Coll Big Data & Internet, Shenzhen 518060, Peoples R China
[7] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Lesions; Retina; Diabetic retinopathy; Convolutional neural networks; Feature extraction; Diseases; Bioinformatics; multi-view; joint learning; fundus image; grading; FUNDUS PHOTOGRAPHY; VALIDATION; SYSTEM;
D O I
10.1109/JBHI.2024.3384251
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As the most common complication of diabetes, diabetic retinopathy (DR) is one of the main causes of irreversible blindness. Automatic DR grading plays a crucial role in early diagnosis and intervention, reducing the risk of vision loss in people with diabetes. In these years, various deep-learning approaches for DR grading have been proposed. Most previous DR grading models are trained using the dataset of single-field fundus images, but the entire retina cannot be fully visualized in a single field of view. There are also problems of scattered location and great differences in the appearance of lesions in fundus images. To address the limitations caused by incomplete fundus features, and the difficulty in obtaining lesion information. This work introduces a novel multi-view DR grading framework, which solves the problem of incomplete fundus features by jointly learning fundus images from multiple fields of view. Furthermore, the proposed model combines multi-view inputs such as fundus images and lesion snapshots. It utilizes heterogeneous convolution blocks (HCB) and scalable self-attention classes (SSAC), which enhance the ability of the model to obtain lesion information. The experimental results show that our proposed method performs better than the benchmark methods on the large-scale dataset.
引用
收藏
页码:3184 / 3193
页数:10
相关论文
共 48 条
[1]   Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning [J].
Abramoff, Michael David ;
Lou, Yiyue ;
Erginay, Ali ;
Clarida, Warren ;
Amelon, Ryan ;
Folk, James C. ;
Niemeijer, Meindert .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (13) :5200-5206
[2]  
이대웅, 2011, [Journal of The Korean Ophthalmological Society, 대한안과학회지], V52, P531
[3]   Deep learning approach for diabetic retinopathy screening [J].
Colas, E. ;
Besse, A. ;
Orgogozo, A. ;
Schmauch, B. ;
Meric, N. ;
Besse, E. .
ACTA OPHTHALMOLOGICA, 2016, 94
[4]  
Costa P, 2017, PROCEEDINGS OF THE FIFTEENTH IAPR INTERNATIONAL CONFERENCE ON MACHINE VISION APPLICATIONS - MVA2017, P165, DOI 10.23919/MVA.2017.7986827
[5]  
Davis JS, 2006, PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON THE ECOLOGICAL IMPORTANCE OF SOLAR SALTWORKS, P5
[6]   TeleOphta: Machine learning and image processing methods for teleophthalmology [J].
Decenciere, E. ;
Cazuguel, G. ;
Zhang, X. ;
Thibault, G. ;
Klein, J. -C. ;
Meyer, F. ;
Marcotegui, B. ;
Quellec, G. ;
Lamard, M. ;
Danno, R. ;
Elie, D. ;
Massin, P. ;
Viktor, Z. ;
Erginay, A. ;
Lay, B. ;
Chabouis, A. .
IRBM, 2013, 34 (02) :196-203
[7]   FEEDBACK ON A PUBLICLY DISTRIBUTED IMAGE DATABASE: THE MESSIDOR DATABASE [J].
Decenciere, Etienne ;
Zhang, Xiwei ;
Cazuguel, Guy ;
Lay, Bruno ;
Cochener, Beatrice ;
Trone, Caroline ;
Gain, Philippe ;
Ordonez-Varela, John-Richard ;
Massin, Pascale ;
Erginay, Ali ;
Charton, Beatrice ;
Klein, Jean-Claude .
IMAGE ANALYSIS & STEREOLOGY, 2014, 33 (03) :231-234
[8]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[9]  
Dosovitskiy A., 2021, P INT C LEARN REPR, DOI [10.48550/arXiv.2010.11929, DOI 10.48550/ARXIV.2010.11929]
[10]   Ultra-wide-field imaging in diabetic retinopathy [J].
Falavarjani, Khalil Ghasemi ;
Tsui, Irena ;
Sadda, Srinivas R. .
VISION RESEARCH, 2017, 139 :187-190