SYNTHESIS OF INFINITE-DIMENSIONAL OBSERVERS FOR INFINITE-DIMENSIONAL VIBRATING SYSTEMS

被引:0
作者
Xu, Cheng-Zhong [1 ]
Fan, Xueru [2 ]
Kou, Chunhai [3 ]
Baillieul, John [4 ]
机构
[1] Univ Claude Bernard Lyon 1, Dept Mech, LAGEPP, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
[2] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[3] Donghua Univ, Dept Math, Shanghai 201620, Peoples R China
[4] Boston Univ, Coll Engn, Boston, MA 02215 USA
关键词
observer; infinite-dimensional system; exact observability; exponential convergence; elastic beam; ROTATING BODY-BEAM; RIESZ BASIS PROPERTY; WELL-POSED SYSTEMS; 2ND-ORDER OBSERVERS; DIRICHLET CONTROL; LINEAR-SYSTEMS; WAVE-EQUATION; STABILIZATION; CONTROLLABILITY; STABILIZABILITY;
D O I
10.1137/24M1632887
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper is concerned with the synthesis of dynamic observers for infinite-dimensional systems. Specifically, we study infinite-dimensional Luenberger-like observers for infinite-dimensional vibrating systems in a framework of abstract regular systems with only boundary measurement. Exponential convergence of the Luenberger-like observers is proved by using the Lyapunov direct method. Moreover, an estimate of the observer convergence rate is given in terms of the system parameters, which is a desirable property for eventually practical applications. Furthermore, the observer convergence rate is improved by proposing a constructive spectrum assignment algorithm. As an example, explicit Luenberger observers are worked out for an Euler--Bernoulli elastic beam system. Exponential convergence of the designed observers is established by proving regularity and exact observability. Numerical simulations are carried out by the finite element method with the analysis of spectral distribution to evaluate the performance of our designed observers.
引用
收藏
页码:1660 / 1685
页数:26
相关论文
共 51 条
[1]   Temperature Distribution Reconstruction in Czochralski Crystal Growth Process [J].
Abdollahi, Javad ;
Izadi, Mojtaba ;
Dubljevic, Stevan .
AICHE JOURNAL, 2014, 60 (08) :2839-2852
[2]  
AUROUX D., 2008, Me'moire de l'Habilitation a Diriger la Recherche
[3]   ROTATIONAL ELASTIC DYNAMICS [J].
BAILLIEUL, J ;
LEVI, M .
PHYSICA D, 1987, 27 (1-2) :43-62
[4]  
BLOCH AM, 1991, PROG SYST C, V7, P128
[5]   SYNTHESIS OF NONLINEAR OBSERVERS - A HARMONIC-ANALYSIS APPROACH [J].
CELLE, F ;
GAUTHIER, JP ;
KAZAKOS, D ;
SALLET, G .
MATHEMATICAL SYSTEMS THEORY, 1989, 22 (04) :291-322
[6]  
CHEN G, 1979, J MATH PURE APPL, V58, P249
[7]  
CHENTOUF B., 1999, IFAC Proc., V32, P2286
[8]   DATA ASSIMILATION OF TIME UNDER-SAMPLED MEASUREMENTS USING OBSERVERS, THE WAVE-LIKE EQUATION EXAMPLE [J].
Cindea, Nicolae ;
Imperiale, Alexandre ;
Moireau, Philippe .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2015, 21 (03) :635-669
[9]  
CONRAD F., 1990, Research Report RR-1235
[10]   Stabilization of a rotating body beam without damping [J].
Coron, JM ;
d'Andrea-Novel, B .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (05) :608-618