A Lightweight Multistream Framework for Salient Object Detection in Optical Remote Sensing

被引:0
作者
Ai, Zhenxin [1 ]
Luo, Huilan [1 ]
Wang, Jianqin [1 ]
机构
[1] Jiangxi Univ Sci & Technol, Jiangxi Prov Key Lab Multidimens Intelligent Perce, Ganzhou 341000, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2025年 / 63卷
基金
中国国家自然科学基金;
关键词
Image edge detection; Feature extraction; Computational modeling; Object detection; Remote sensing; Decoding; Accuracy; Skeleton; Saliency detection; Optical sensors; Edge-skeleton integration; hybrid attention mechanism; lightweight networks; multiscale feature learning; optical remote sensing images (ORSIs); salient object detection (SOD); NETWORK;
D O I
10.1109/TGRS.2025.3555647
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Salient object detection (SOD) in optical remote sensing images (ORSIs) is challenging due to small object sizes, low contrast, and complex backgrounds. Existing methods often rely on computationally intensive architectures, limiting their efficiency in real-world applications. To address this, we propose LiteSalNet, a lightweight deep learning framework for ORSI SOD. LiteSalNet employs MobileNetV2 as a compact encoder and enhances multiscale feature representation through three modules: the adaptive spatial attention module (ASAM) for spatial attention (SA) refinement, the dual-scale feature enhancement module (DSFEM) for local-global feature integration, and the semantic context enhancement module (SCEM) for high-level semantic refinement. Additionally, a multistream progressively decoding framework (MSPDF) is introduced to decode saliency, edge, and skeleton maps in a supervised manner, improving boundary precision, suppressing background noise, and enhancing internal object consistency. Extensive experiments on two benchmark ORSI datasets demonstrate that LiteSalNet outperforms 19 state-of-the-art (SOTA) models across multiple evaluation metrics, including F-measure (F-m), S-measure, E-measure, and mean absolute error (MAE). Notably, LiteSalNet achieves these results with only 3.90 M parameters and 7.35 G floating-point operations per second (FLOPs), ensuring high computational efficiency. The code and results are available at https://github.com/ai-kunkun/LiteSalNet.
引用
收藏
页数:15
相关论文
共 66 条
[51]  
Yao J, 2024, Arxiv, DOI [arXiv:2404.08489, DOI 10.48550/ARXIV.2404.08489]
[52]  
Ye H., 2020, IEEE Trans. Image Process., V29, P3633
[53]   Amulet: Aggregating Multi-level Convolutional Features for Salient Object Detectionn [J].
Zhang, Pingping ;
Wang, Dong ;
Lu, Huchuan ;
Wang, Hongyu ;
Ruan, Xiang .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :202-211
[54]   Dense Attention Fluid Network for Salient Object Detection in Optical Remote Sensing Images [J].
Zhang, Qijian ;
Cong, Runmin ;
Li, Chongyi ;
Cheng, Ming-Ming ;
Fang, Yuming ;
Cao, Xiaochun ;
Zhao, Yao ;
Kwong, Sam .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :1305-1317
[55]  
Zhang S., 2020, IEEE Trans. Geosci. Remote Sens., V58, P3671
[56]   Multireceptive field: An adaptive path aggregation graph neural framework for hyperspectral image classification [J].
Zhang, Zhili ;
Ding, Yao ;
Zhao, Xiaofeng ;
Siye, L. ;
Yang, Nengjun ;
Cai, Yaoming ;
Zhan, Ying .
EXPERT SYSTEMS WITH APPLICATIONS, 2023, 217
[57]  
Zhao J., 2021, P TNNLS, P1234
[58]   EGNet: Edge Guidance Network for Salient Object Detection [J].
Zhao, Jia-Xing ;
Liu, Jiang-Jiang ;
Fan, Deng-Ping ;
Cao, Yang ;
Yang, Ju-Feng ;
Cheng, Ming-Ming .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :8778-8787
[59]   Adaptive Dual-Stream Sparse Transformer Network for Salient Object Detection in Optical Remote Sensing Images [J].
Zhao, Jie ;
Jia, Yun ;
Ma, Lin ;
Yu, Lidan .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 :5173-5192
[60]   Interactive Two-Stream Decoder for Accurate and Fast Saliency Detection [J].
Zhou, Huajun ;
Xie, Xiaohua ;
Lai, Jian-Huang ;
Chen, Zixuan ;
Yang, Lingxiao .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :9138-9147