A Lightweight Multistream Framework for Salient Object Detection in Optical Remote Sensing

被引:0
作者
Ai, Zhenxin [1 ]
Luo, Huilan [1 ]
Wang, Jianqin [1 ]
机构
[1] Jiangxi Univ Sci & Technol, Jiangxi Prov Key Lab Multidimens Intelligent Perce, Ganzhou 341000, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2025年 / 63卷
基金
中国国家自然科学基金;
关键词
Image edge detection; Feature extraction; Computational modeling; Object detection; Remote sensing; Decoding; Accuracy; Skeleton; Saliency detection; Optical sensors; Edge-skeleton integration; hybrid attention mechanism; lightweight networks; multiscale feature learning; optical remote sensing images (ORSIs); salient object detection (SOD); NETWORK;
D O I
10.1109/TGRS.2025.3555647
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Salient object detection (SOD) in optical remote sensing images (ORSIs) is challenging due to small object sizes, low contrast, and complex backgrounds. Existing methods often rely on computationally intensive architectures, limiting their efficiency in real-world applications. To address this, we propose LiteSalNet, a lightweight deep learning framework for ORSI SOD. LiteSalNet employs MobileNetV2 as a compact encoder and enhances multiscale feature representation through three modules: the adaptive spatial attention module (ASAM) for spatial attention (SA) refinement, the dual-scale feature enhancement module (DSFEM) for local-global feature integration, and the semantic context enhancement module (SCEM) for high-level semantic refinement. Additionally, a multistream progressively decoding framework (MSPDF) is introduced to decode saliency, edge, and skeleton maps in a supervised manner, improving boundary precision, suppressing background noise, and enhancing internal object consistency. Extensive experiments on two benchmark ORSI datasets demonstrate that LiteSalNet outperforms 19 state-of-the-art (SOTA) models across multiple evaluation metrics, including F-measure (F-m), S-measure, E-measure, and mean absolute error (MAE). Notably, LiteSalNet achieves these results with only 3.90 M parameters and 7.35 G floating-point operations per second (FLOPs), ensuring high computational efficiency. The code and results are available at https://github.com/ai-kunkun/LiteSalNet.
引用
收藏
页数:15
相关论文
共 66 条
[1]   State-of-the-Art in Visual Attention Modeling [J].
Borji, Ali ;
Itti, Laurent .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (01) :185-207
[2]   SpectralDiff: A Generative Framework for Hyperspectral Image Classification With Diffusion Models [J].
Chen, Ning ;
Yue, Jun ;
Fang, Leyuan ;
Xia, Shaobo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[3]   Edge Feature Enhancement for Fine-Grained Segmentation of Remote Sensing Images [J].
Chen, Zhenxiang ;
Xu, Tingfa ;
Pan, Yongzhuo ;
Shen, Ning ;
Chen, Huan ;
Li, Jianan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
[4]  
Chen ZY, 2020, AAAI CONF ARTIF INTE, V34, P10599
[5]   Global Contrast based Salient Region Detection [J].
Cheng, Ming-Ming ;
Zhang, Guo-Xin ;
Mitra, Niloy J. ;
Huang, Xiaolei ;
Hu, Shi-Min .
2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011, :409-416
[6]   RRNet: Relational Reasoning Network With Parallel Multiscale Attention for Salient Object Detection in Optical Remote Sensing Images [J].
Cong, Runmin ;
Zhang, Yumo ;
Fang, Leyuan ;
Li, Jun ;
Zhao, Yao ;
Kwong, Sam .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[7]   Multi-scale object detection in remote sensing imagery with convolutional neural networks [J].
Deng, Zhipeng ;
Sun, Hao ;
Zhou, Shilin ;
Zhao, Juanping ;
Lei, Lin ;
Zou, Huanxin .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 145 :3-22
[8]  
Ding Y, 2025, Arxiv, DOI [arXiv:2501.01595, DOI 10.48550/ARXIV.2501.01595]
[9]   Unsupervised Self-Correlated Learning Smoothy Enhanced Locality Preserving Graph Convolution Embedding Clustering for Hyperspectral Images [J].
Ding, Yao ;
Zhang, Zhili ;
Zhao, Xiaofeng ;
Cai, Wei ;
Yang, Nengjun ;
Hu, Haojie ;
Huang, Xianxiang ;
Cao, Yuan ;
Cai, Weiwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[10]   Self-Supervised Locality Preserving Low-Pass Graph Convolutional Embedding for Large-Scale Hyperspectral Image Clustering [J].
Ding, Yao ;
Zhang, Zhili ;
Zhao, Xiaofeng ;
Cai, Yaoming ;
Li, Siye ;
Deng, Biao ;
Cai, Weiwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60