A localized orthogonal decomposition strategy for hybrid discontinuous Galerkin methods

被引:0
作者
Lu, Peipei [1 ]
Maier, Roland [2 ]
Rupp, Andreas [3 ]
机构
[1] Soochow Univ, Dept Math Sci, Suzhou 215006, Peoples R China
[2] Karlsruhe Inst Technol, Inst Appl & Numer Math, Englerstr 2, D-76131 Karlsruhe, Germany
[3] Saarland Univ, Dept Math, D-66123 Saarbrucken, Germany
基金
芬兰科学院; 国家重点研发计划;
关键词
Multiscale method; hybrid method; elliptic problems; Poincar & eacute; -Friedrichs inequalities for DG and HDG; FINITE-ELEMENT METHODS; HETEROGENEOUS MULTISCALE METHOD; 2ND-ORDER ELLIPTIC PROBLEMS; ORDER; HOMOGENIZATION;
D O I
10.1051/m2an/2025029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We formulate and analyze a multiscale method for an elliptic problem with an oscillatory coefficient based on a skeletal (hybrid) formulation. More precisely, we employ hybrid discontinuous Galerkin approaches and combine them with the localized orthogonal decomposition methodology to obtain a coarse-scale skeletal method that effectively includes fine-scale information. This work is the first step in reliably merging hybrid skeletal formulations and localized orthogonal decomposition to unite the advantages of both strategies. Numerical experiments are presented to illustrate the theoretical findings.
引用
收藏
页码:1213 / 1237
页数:25
相关论文
共 56 条
[1]   Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems [J].
Abdulle, Assyr ;
Bai, Yun .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (21) :7014-7036
[2]  
Abdulle A, 2012, MATH COMPUT, V81, P687
[3]   Multiscale finite element method for numerical homogenization [J].
Allaire, G ;
Brizzi, R .
MULTISCALE MODELING & SIMULATION, 2005, 4 (03) :790-812
[4]   Numerical homogenization beyond scale separation [J].
Altmann, Robert ;
Henning, Patrick ;
Peterseim, Daniel .
ACTA NUMERICA, 2021, 30 :1-86
[5]   MULTISCALE HYBRID-MIXED METHOD [J].
Araya, Rodolfo ;
Harder, Christopher ;
Paredes, Diego ;
Valentin, Frederic .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (06) :3505-3531
[6]   A multiscale mortar mixed finite element method [J].
Arbogast, Todd ;
Pencheva, Gergina ;
Wheeler, Mary F. ;
Yotov, Ivan .
MULTISCALE MODELING & SIMULATION, 2007, 6 (01) :319-346
[7]   MIXED AND NONCONFORMING FINITE-ELEMENT METHODS - IMPLEMENTATION, POSTPROCESSING AND ERROR-ESTIMATES [J].
ARNOLD, DN ;
BREZZI, F .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (01) :7-32
[8]   SPECIAL FINITE-ELEMENT METHODS FOR A CLASS OF 2ND-ORDER ELLIPTIC PROBLEMS WITH ROUGH COEFFICIENTS [J].
BABUSKA, I ;
CALOZ, G ;
OSBORN, JE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (04) :945-981
[9]   GENERALIZED FINITE-ELEMENT METHODS - THEIR PERFORMANCE AND THEIR RELATION TO MIXED METHODS [J].
BABUSKA, I ;
OSBORN, JE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (03) :510-536
[10]   OPTIMAL LOCAL APPROXIMATION SPACES FOR GENERALIZED FINITE ELEMENT METHODS WITH APPLICATION TO MULTISCALE PROBLEMS [J].
Babuska, Ivo ;
Lipton, Robert .
MULTISCALE MODELING & SIMULATION, 2011, 9 (01) :373-406