Physics-based stabilized finite element approximations of the Poisson-Nernst-Planck equations

被引:0
作者
Bonilla, Jesus [1 ]
Gutierrez-Santacreu, Juan Vicente [2 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Univ Seville, Dept Matemat Aplicada 1, ETSI Informat, Avda Reina Mercedes S-N, E-41012 Seville, Spain
关键词
Poisson-Nernst-Planck equations; Stabilized finite-element approximation; Shock detector; Maximum and minimum discrete principles; Entropy; KELLER-SEGEL; SCHEMES;
D O I
10.1016/j.cma.2025.118035
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present and analyze two stabilized finite element methods for solving numerically the Poisson-Nernst-Planck equations. The stabilization we consider is carried out by using a shock detector and a discrete graph Laplacian operator for the ion equations, whereas the discrete equation for the electric potential need not be stabilized. Discrete solutions stemmed from the first algorithm preserve both maximum and minimum discrete principles. For the second algorithm, its discrete solutions are conceived so that they hold discrete principles and obey an entropy law provided that an acuteness condition is imposed for meshes. Remarkably the latter is found to be unconditionally stable. We validate our methodology through transient numerical experiments that show convergence toward steady-state solutions.
引用
收藏
页数:26
相关论文
共 19 条
[1]   An Unconditionally Energy Stable and Positive Upwind DG Scheme for the Keller-Segel Model [J].
Acosta-Soba, Daniel ;
Guillen-Gonzalez, Francisco ;
Rodriguez-Galvan, J. Rafael .
JOURNAL OF SCIENTIFIC COMPUTING, 2023, 97 (01)
[2]   Bound-preserving finite element approximations of the Keller-Segel equations [J].
Badia, Santiago ;
Bonilla, Jesus ;
Gutierrez-Santacreu, Juan Vicente .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2023, 33 (03) :609-642
[3]   Monotonicity-preserving finite element schemes based on differentiable nonlinear stabilization [J].
Badia, Santiago ;
Bonilla, Jesus .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 313 :133-158
[4]   Exploring numerical blow-up phenomena for the Keller-Segel-Navier-Stokes equations [J].
Bonilla, Jesus ;
Gutierrez-Santacreu, Juan Vicente .
JOURNAL OF NUMERICAL MATHEMATICS, 2024, 32 (02) :175-212
[5]  
Cabrales R.C., 2025, On a convergence proof for an algebraic manipulation finite element method applied to convection-diffusion phenomena
[6]  
Ding J, 2023, COMMUN MATH SCI, V21, P459
[7]   Structure-preserving and efficient numerical methods for ion transport [J].
Ding, Jie ;
Wang, Zhongming ;
Zhou, Shenggao .
JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 418
[8]   High-order space-time finite element methods for the Poisson-Nernst-Planck equations: Positivity and unconditional energy stability? [J].
Fu, Guosheng ;
Xu, Zhiliang .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 395
[9]   Error estimates of a linear decoupled Euler-FEM scheme for a mass diffusion model [J].
Guillen-Gonzalez, Francisco ;
Vicente Gutierrez-Santacreu, Juan .
NUMERISCHE MATHEMATIK, 2011, 117 (02) :333-371
[10]   A Positivity Preserving and Free Energy Dissipative Difference Scheme for the Poisson-Nernst-Planck System [J].
He, Dongdong ;
Pan, Kejia ;
Yue, Xiaoqiang .
JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (01) :436-458