Biomineral/VEGF-functionalized fiber - enhanced 3D printed GelMA hydrogel to facilitate bone regeneration through osteogenesis and angiogenesis modulation

被引:0
作者
Liu, Xiaokang [1 ]
Wang, Baoxiu [2 ]
Ma, Jinghong [1 ]
Hu, Haoran [3 ]
机构
[1] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Adv Fiber Mat, Shanghai 201620, Peoples R China
[2] Shanghai Univ Engn Sci, Sch Chem & Chem Engn, Shanghai 201620, Peoples R China
[3] Shanghai Jiao Tong Univ, Shanghai Peoples Hosp 6, Sch Med, Dept Orthoped, Shanghai 200233, Peoples R China
基金
中国国家自然科学基金;
关键词
3D printing; Enzymatic mineralization; GelMA; Vascularization; Bone regeneration; ELECTROSPUN NANOFIBERS; VIBRATIONAL ANALYSIS; CRYSTALLIZATION; CRYSTALS; SCAFFOLD; GELATIN;
D O I
10.1016/j.ijbiomac.2025.143991
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Three-dimensionally (3D) printed hydrogels face significant challenges in promoting osteogenesis and angiogenesis for bone tissue engineering. In this study, we designed a bioactive 3D-printed hydrogel to enhance bone regeneration through osteogenesis and angiogenesis modulation. An enzymatic mineralization strategy was proposed to develop biomineral/vascular endothelial growth factor (VEGF)-functionalized poly (L-lactic acid) (PLLA) micro-nanofibers (m-PLLA@VEGF). These micro-nanofibers were incorporated into gelatin methacryloyl (GelMA) bioink to develop GelMA/m-PLLA@VEGF hydrogel scaffold. The m-PLLA@VEGF micro-nanofibers provided multiple benefits. Specifically, they improved the rheological properties of the GelMA bioink and mechanical properties of the hydrogel, and promoted osteogenesis and angiogenesis of the hydrogel scaffold. The resulting GelMA/m-PLLA@VEGF hydrogel scaffold effectively promoted osteogenesis by enhancing osteoblastrelated expression and mineralized matrix deposition, aided by the sustained release of biominerals (Ca and P ions). It also significantly enhanced endothelial cell proliferation, scratch wound healing, and the expression of angiogenesis-related genes. When implanted in a critical-sized rat calvarial bone defect model, the composite hydrogel scaffold facilitated bone regeneration through the synergistic modulation of angiogenesis and osteogenesis. Overall, this work presented an innovative approach for developing functionalized micro-nanofibers, with the enhanced bioactive hydrogel showing significant potential for bone regeneration.
引用
收藏
页数:17
相关论文
共 91 条
[61]   Extracellular matrix stiffness controls osteogenic differentiation of mesenchymal stem cells mediated by integrin α5 [J].
Sun, Meiyu ;
Chi, Guangfan ;
Xu, Juanjuan ;
Tan, Ye ;
Xu, Jiayi ;
Lv, Shuang ;
Xu, Ziran ;
Xia, Yuhan ;
Li, Lisha ;
Li, Yulin .
STEM CELL RESEARCH & THERAPY, 2018, 9
[62]   ECM-mimetic glucomannan hydrogel promotes pressure ulcer healing by scavenging ROS, promoting angiogenesis and regulating macrophages [J].
Sun, Mingming ;
Wang, Qiuying ;
Li, Ting ;
Wang, Wenzhu ;
Li, Zihan ;
Ji, Yufei ;
Zhang, Shuangyue ;
Li, Yan ;
Liu, Wenshuai ;
Yu, Yan .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 280
[63]   The effect of selective mineralization of PLLA in simulated body fluid induced by ArF excimer laser irradiation: Tailored composites with potential in bone tissue engineering [J].
Szustakiewicz, Konrad ;
Kryszak, Bartlomiej ;
Gazinska, Malgorzata ;
Checmanowski, Jacek ;
Stepak, Bogusz ;
Grzymajlo, Michal ;
Antonczak, Arkadiusz .
COMPOSITES SCIENCE AND TECHNOLOGY, 2020, 197
[64]   Bacterial cellulose/gelatin scaffold loaded with VEGF-silk fibroin nanoparticles for improving angiogenesis in tissue regeneration [J].
Wang, Baoxiu ;
Lv, Xiangguo ;
Chen, Shiyan ;
Li, Zhe ;
Yao, Jingjing ;
Peng, Xufeng ;
Feng, Chao ;
Xu, Yuemin ;
Wang, Huaping .
CELLULOSE, 2017, 24 (11) :5013-5024
[65]   NIR-programmable 3D-printed shape-memory scaffold with dual-thermal responsiveness for precision bone regeneration and bone tumor management [J].
Wang, Hui ;
Zhang, Jiaxin ;
Li, Zuhao ;
Liu, Jiaqi ;
Chang, Haoran ;
Jia, Shipu ;
Di, Zexin ;
Liu, He ;
Wang, Jincheng ;
Gao, Delong ;
Wang, Chenyu ;
Li, Guiwei ;
Zhao, Xin .
JOURNAL OF NANOBIOTECHNOLOGY, 2025, 23 (01)
[66]   Injectable remote magnetic nanofiber/hydrogel multiscale scaffold for functional anisotropic skeletal muscle regeneration [J].
Wang, Ling ;
Li, Ting ;
Wang, Zihan ;
Hou, Juedong ;
Liu, Sitian ;
Yang, Qiao ;
Yu, Liu ;
Guo, Weihong ;
Wang, Yongjie ;
Guo, Baolin ;
Huang, Wenhua ;
Wu, Yaobin .
BIOMATERIALS, 2022, 285
[67]   3D Contour Printing of Anatomically Mimetic Cartilage Grafts with Microfiber-Reinforced Double-Network Bioink [J].
Wang, Meng ;
Zhao, Jianping ;
Luo, Yixuan ;
Liang, Qianyi ;
Liu, Yisi ;
Zhong, Gang ;
Yu, Yin ;
Chen, Fei .
MACROMOLECULAR BIOSCIENCE, 2022, 22 (09)
[68]   ROS-Activated Nanohydrogel Scaffolds with Multi-Factors Controlled Release for Targeted Dual-Lineage Repair of Osteochondral Defects [J].
Wang, Xiuhui ;
Wu, Shunli ;
Li, Ruiyang ;
Yang, Huijian ;
Sun, Yue ;
Cao, Zijie ;
Chen, Xiao ;
Hu, Yan ;
Zhang, Hao ;
Geng, Zhen ;
Bai, Long ;
Shi, Zhongmin ;
Xu, Ke ;
Tan, Hongbo ;
Su, Jiacan .
ADVANCED SCIENCE, 2025, 12 (20)
[69]   An endometrial biomimetic extracellular matrix (ECM) for enhanced endometrial regeneration using hyaluronic acid hydrogel containing recombinant human type III collagen [J].
Wei, Siying ;
Li, Ziyi ;
Xia, Huan ;
Wang, Zhaoyang ;
Deng, Jingxian ;
Li, Lu ;
Huang, Rufei ;
Ye, Tao ;
Huang, Yadong ;
Yang, Yan .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 268
[70]   Osteostatin improves the Osteogenic differentiation of mesenchymal stem cells and enhances angiogenesis through HIF-1α under hypoxia conditions in vitro [J].
Wu, Dongjin ;
Liu, Liyan ;
Fu, Shenglong ;
Zhang, Jun .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2022, 606 :100-107