Long-range multipartite entanglement near measurement-induced transitions

被引:0
作者
Avakian, Sebastien J. [1 ,2 ]
Pereg-Barnea, T. [1 ,3 ]
Witczak-Krempa, William [2 ,4 ,5 ]
机构
[1] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
[2] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada
[3] Barcelona Inst Sci & Technol, Inst Ciencies Foton, ICFO, Castelldefels 08860, Barcelona, Spain
[4] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
[5] Univ Montreal, Inst Courtois, Montreal, PQ H2V 0B3, Canada
来源
PHYSICAL REVIEW RESEARCH | 2025年 / 7卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1103/PhysRevResearch.7.023135
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Measurements profoundly impact quantum systems and can be used to create novel states of matter out of equilibrium. We investigate the multipartite entanglement structure that emerges in hybrid quantum circuits involving unitaries and measurements. We describe how a balance between measurements and unitary evolution can lead to multipartite entanglement spreading to distances far greater than what is found in nonmonitored systems, thus evading the usual fate of entanglement. We introduce a graphical representation based on spanning graphs that allows to infer the evolution of genuine multipartite entanglement for general subregions. We exemplify our findings on hybrid random Haar circuits that realize a 1D measurement-induced dynamical phase transition, where we find genuine three-party entanglement at all separations. At criticality, our data are consistent with power-law decay with a tripartite exponent strictly larger than the one of the bipartite logarithmic negativity. The four-party case is also explored. Finally, we discuss how our approach can provide fundamental insights regarding entanglement dynamics for a wide class of quantum circuits and architectures.
引用
收藏
页数:10
相关论文
共 28 条
[1]   Entanglement negativity in extended systems: a field theoretical approach [J].
Calabrese, Pasquale ;
Cardy, John ;
Tonni, Erik .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
[2]   Entanglement Negativity in Quantum Field Theory [J].
Calabrese, Pasquale ;
Cardy, John ;
Tonni, Erik .
PHYSICAL REVIEW LETTERS, 2012, 109 (13)
[3]   Unitary-projective entanglement dynamics [J].
Chan, Amos ;
Nandkishore, Rahul M. ;
Pretko, Michael ;
Smith, Graeme .
PHYSICAL REVIEW B, 2019, 99 (22)
[4]  
Di Fresco G, 2024, QUANTUM-AUSTRIA, V8
[5]   Random Quantum Circuits [J].
Fisher, Matthew P. A. ;
Khemani, Vedika ;
Nahum, Adam ;
Vijay, Sagar .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, 2023, 14 :335-379
[6]   Genuine multipartite entanglement in the cluster-Ising model [J].
Giampaolo, S. M. ;
Hiesmayr, B. C. .
NEW JOURNAL OF PHYSICS, 2014, 16
[7]   Genuine multipartite entanglement in the XY model [J].
Giampaolo, S. M. ;
Hiesmayr, B. C. .
PHYSICAL REVIEW A, 2013, 88 (05)
[8]   Separability criteria for genuine multiparticle entanglement [J].
Guehne, Otfried ;
Seevinck, Michael .
NEW JOURNAL OF PHYSICS, 2010, 12
[9]   Scaling of genuine multiparticle entanglement close to a quantum phase transition [J].
Hofmann, Martin ;
Osterloh, Andreas ;
Guehne, Otfried .
PHYSICAL REVIEW B, 2014, 89 (13)
[10]   Detection of High-Dimensional Genuine Multipartite Entanglement of Mixed States [J].
Huber, Marcus ;
Mintert, Florian ;
Gabriel, Andreas ;
Hiesmayr, Beatrix C. .
PHYSICAL REVIEW LETTERS, 2010, 104 (21)