Negative large deviations of the front velocity of N-particle branching Brownian motion

被引:0
作者
Meerson, Baruch [1 ]
Sasorov, Pavel, V [2 ]
机构
[1] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
[2] ELI Beamlines Facil, Extreme Light Infrastructure ERIC, Dolni Brezany 25241, Czech Republic
基金
以色列科学基金会;
关键词
FLUCTUATIONS;
D O I
10.1103/PhysRevE.110.064111
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study negative large deviations of the long-time empirical front velocity of the center of mass of the onesided N-BBM (N-particle branching Brownian motion) system in one dimension. Employing the macroscopic fluctuation theory, we study the probability that c is smaller than the limiting front velocity c(0), predicted by the deterministic theory, or even becomes negative. To this end, we determine the optimal path of the system, conditioned on the specified c. We show that for c(0) - c << c(0) the properly defined rate function s(c), coincides, up to a nonuniversal numerical factor, with the universal rate functions for front models belonging to the Fisher-Kolmogorov-Petrovsky-Piscounov universality class. For sufficiently large negative values of c, s(c) approaches a simple bound, obtained under the assumption that the branching is completely suppressed during the whole time. Remarkably, for all c <= c(*), where c(*) < 0 is a critical value that we find numerically, the rate function s(c) is equal to the simple bound. At the critical point c = c(*) the character of the optimal path changes, and the rate function exhibits a dynamical phase transition of second order.
引用
收藏
页数:10
相关论文
共 27 条
[1]   Equilibrium states with macroscopic correlations [J].
Basile, G ;
Jona-Lasinio, G .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2004, 18 (4-5) :479-485
[2]  
Berestycki J, 2024, Arxiv, DOI arXiv:2407.05792
[3]   BROWNIAN BEES IN THE INFINITE SWARM LIMIT [J].
Berestycki, Julien ;
Brunet, Eric ;
Nolen, James ;
Penington, Sarah .
ANNALS OF PROBABILITY, 2022, 50 (06) :2133-2177
[4]   A FREE BOUNDARY PROBLEM ARISING FROM BRANCHING BROWNIAN MOTION WITH SELECTION [J].
Berestycki, Julien ;
Brunet, Eric ;
Nolen, James ;
Penington, Sarah .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (09) :6269-6329
[5]   Macroscopic fluctuation theory [J].
Bertini, Lorenzo ;
De Sole, Alberto ;
Gabrielli, Davide ;
Jona-Lasinio, Giovanni ;
Landim, Claudio .
REVIEWS OF MODERN PHYSICS, 2015, 87 (02) :593-636
[6]   Current Large Deviations in a Driven Dissipative Model [J].
Bodineau, T. ;
Lagouge, M. .
JOURNAL OF STATISTICAL PHYSICS, 2010, 139 (02) :201-218
[7]   Effect of selection on ancestry:: An exactly soluble case and its phenomenological generalization [J].
Brunet, E. ;
Derrida, B. ;
Mueller, A. H. ;
Munier, S. .
PHYSICAL REVIEW E, 2007, 76 (04)
[8]   Phenomenological theory giving the full statistics of the position of fluctuating pulled fronts [J].
Brunet, E. ;
Derrida, B. ;
Mueller, A. H. ;
Munier, S. .
PHYSICAL REVIEW E, 2006, 73 (05)
[9]   Shift in the velocity of a front due to a cutoff [J].
Brunet, E ;
Derrida, B .
PHYSICAL REVIEW E, 1997, 56 (03) :2597-2604
[10]  
De Masi A., 2019, IHPSTOCHDYN 2017, V282, P523