Provably Efficient Simulation of 1D Long-Range Interacting Systems at Any Temperature

被引:0
作者
Achutha, Rakesh [1 ,2 ]
Kim, Donghoon [1 ]
Kimura, Yusuke [1 ]
Kuwahara, Tomotaka [1 ,3 ,4 ]
机构
[1] RIKEN Ctr Quantum Comp RQC, RIKEN Hakubi Res Team, Analyt quantum complex, Wako, Saitama 3510198, Japan
[2] Banaras Hindu Univ, Indian Inst Technol, Dept Comp Sci & Engn, Varanasi 221005, India
[3] Japan Sci & Technol JST, PRESTO, Kawaguchi, Saitama 3320012, Japan
[4] RIKEN, Cluster Pioneering Res CPR, Wako, Saitama 3510198, Japan
关键词
PHASE-TRANSITION; QUANTUM; ALGORITHMS; STATES;
D O I
10.1103/PhysRevLett.134.190404
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a method that ensures efficient computation of one-dimensional quantum systems with longrange interactions across all temperatures. Our algorithm operates within a quasipolynomial run-time for inverse temperatures up to beta 1/4 poly & eth;ln & eth;n & THORN;& THORN;. At the core of our approach is the density matrix renormalization group algorithm, which typically does not guarantee efficiency. We have created a new truncation scheme for the matrix product operator of the quantum Gibbs states, which allows us to control the error analytically. Additionally, our method can be applied to simulate the time evolution of systems with long-range interactions, achieving significantly better precision than that offered by the Lieb-Robinson bound.
引用
收藏
页数:8
相关论文
共 74 条
[1]  
Achutha R., 2025, Physical Review Letters, V134
[2]   Locally Accurate Tensor Networks for Thermal States and Time Evolution [J].
Alhambra, Alvaro M. ;
Cirac, J. Ignacio .
PRX QUANTUM, 2021, 2 (04)
[3]   Rigorous RG Algorithms and Area Laws for Low Energy Eigenstates in 1D [J].
Arad, Itai ;
Landau, Zeph ;
Vazirani, Umesh ;
Vidick, Thomas .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 356 (01) :65-105
[4]   GIBBS STATES OF A ONE DIMENSIONAL QUANTUM LATTICE [J].
ARAKI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1969, 14 (02) :120-&
[5]   Thermal evolution of the Schwinger model with matrix product operators [J].
Banuls, M. C. ;
Cichy, K. ;
Cirac, J. I. ;
Jansen, K. ;
Saito, H. .
PHYSICAL REVIEW D, 2015, 92 (03)
[6]   Probing many-body dynamics on a 51-atom quantum simulator [J].
Bernien, Hannes ;
Schwartz, Sylvain ;
Keesling, Alexander ;
Levine, Harry ;
Omran, Ahmed ;
Pichler, Hannes ;
Choi, Soonwon ;
Zibrov, Alexander S. ;
Endres, Manuel ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2017, 551 (7682) :579-+
[7]   Approximation by exponential sums revisited [J].
Beylkin, Gregory ;
Monzon, Lucas .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2010, 28 (02) :131-149
[8]   Preparing Thermal States of Quantum Systems by Dimension Reduction [J].
Bilgin, Ersen ;
Boixo, Sergio .
PHYSICAL REVIEW LETTERS, 2010, 105 (17)
[9]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[10]   Finite Correlation Length Implies Efficient Preparation of Quantum Thermal States [J].
Brandao, Fernando G. S. L. ;
Kastoryano, Michael J. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 365 (01) :1-16