Nonlinear evolution and energy dissipation in shear-driven collisionless plasma turbulence

被引:0
作者
Goodwill, J. [1 ]
Adhikari, S. [1 ]
Li, X. [2 ]
Pucci, F. [3 ]
Yang, Y. [1 ]
Guo, F. [2 ]
Matthaeus, W. H. [1 ]
机构
[1] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[3] CNR, Inst Plasma Sci & Technol CNR ISTP, I-70125 Bari, Italy
基金
美国国家科学基金会;
关键词
KELVIN-HELMHOLTZ INSTABILITY; MAGNETOSPHERIC BOUNDARY; RECONNECTION; STABILITY;
D O I
10.1063/5.0255087
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Turbulence is often driven by velocity shears or temperature gradients. Previous studies have emphasized shear-driven plasma dynamics initiated by linear (Kelvin-Helmholtz) instability and leading to saturation due to vortex roll-up. For the collisionless plasma case, small-scale kinetic effects responsible for energy conversion and dissipation have been studied in fully developed turbulence and in magnetic reconnection; here, this analysis is applied to velocity shear-driven turbulence using particle-in-cell simulations. An emphasis is on the description of evolving turbulent characteristics in relation to dissipation and coherent structures. The results quantify partitioning between electron and proton heating as well as the spatial intermittency of dissipation for each species. The results may be relevant to interpretation of Magnetosphere Multiscale mission data and Parker Solar Probe measurements in regions where unequal proton-electron heating as well as shear-driven turbulence may be present.
引用
收藏
页数:9
相关论文
共 55 条
[1]   Effect of a guide field on the turbulence like properties of magnetic reconnection [J].
Adhikari, S. ;
Shay, M. A. ;
Parashar, T. N. ;
Matthaeus, W. H. ;
Pyakurel, P. S. ;
Stawarz, J. E. ;
Eastwood, J. P. .
PHYSICS OF PLASMAS, 2023, 30 (08)
[2]   Energy transfer in reconnection and turbulence [J].
Adhikari, S. ;
Parashar, T. N. ;
Shay, M. A. ;
Matthaeus, W. H. ;
Pyakurel, P. S. ;
Fordin, S. ;
Stawarz, J. E. ;
Eastwood, J. P. .
PHYSICAL REVIEW E, 2021, 104 (06)
[3]   Reconnection from a turbulence perspective [J].
Adhikari, S. ;
Shay, M. A. ;
Parashar, T. N. ;
Pyakurel, P. Sharma ;
Matthaeus, W. H. ;
Godzieba, D. ;
Stawarz, J. E. ;
Eastwood, J. P. ;
Dahlin, J. T. .
PHYSICS OF PLASMAS, 2020, 27 (04)
[4]  
Adhikari S, 2025, Arxiv, DOI arXiv:2503.11825
[5]   Reconnection signatures in Kelvin-Helmholtz instability evolution in 2D PIC simulations [J].
Ahmadi, N. ;
Wilder, F. D. ;
Ergun, R. E. ;
Newman, D. ;
Qi, Y. ;
Germaschewski, K. ;
Eriksson, S. ;
Chasapis, A. ;
Elkington, S. .
PHYSICS OF PLASMAS, 2025, 32 (02)
[6]   Scale Locality of Magnetohydrodynamic Turbulence [J].
Aluie, Hussein ;
Eyink, Gregory L. .
PHYSICAL REVIEW LETTERS, 2010, 104 (08)
[7]   Pressure-strain interaction. III. Particle-in-cell simulations of magnetic reconnection [J].
Barbhuiya, M. Hasan ;
Cassak, Paul A. .
PHYSICS OF PLASMAS, 2022, 29 (12)
[8]   Geospace Environment Modeling (GEM) magnetic reconnection challenge: Resistive tearing, anisotropic pressure and Hall effects [J].
Birn, J ;
Hesse, M .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2001, 106 (A3) :3737-3750
[9]  
Bowers KJ, 2008, INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, P32
[10]   The Solar Wind as a Turbulence Laboratory [J].
Bruno, Roberto ;
Carbone, Vincenzo .
LIVING REVIEWS IN SOLAR PHYSICS, 2013, 10 (02) :7-+