Hybrid Quantum-Classical Deep Neural Networks Based Smart Contract Vulnerability Detection

被引:0
作者
Durgut, Sinan [1 ]
Kucuksille, Ecir Ugur [2 ]
Tokmak, Mahmut [3 ]
机构
[1] Suleyman Demirel Univ, Inst Nat & Appl Sci, TR-32200 Isparta, Turkiye
[2] Suleyman Demirel Univ, Engn & Nat Sci Fac, Dept Comp Engn, TR-32200 Isparta, Turkiye
[3] Burdur Mehmet Akif Ersoy Univ, Bucak Zeliha Tolunay Sch Appl Technol & Management, Dept Management Informat Syst, TR-15300 Burdur, Turkiye
来源
APPLIED SCIENCES-BASEL | 2025年 / 15卷 / 07期
关键词
quantum machine learning; quantum neural networks; hybrid quantum-classical neural networks; smart contract; vulnerability detection;
D O I
10.3390/app15074037
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The increasing adoption of blockchain technology has presented significant challenges in maintaining the security and reliability of smart contracts. This study addresses the problem of identifying security flaws in smart contracts, which may result in monetary damages and diminished confidence in blockchain systems. A Hybrid Quantum-Classical Deep Neural Network (HQCDNN) approach was proposed, combining quantum computing principles with classical deep learning methods to identify various vulnerability types, including access control, arithmetic, front-running, reentrancy, time manipulation, denial of service, and unchecked low calls. The SmartBugs Wild Dataset was used for training, with TF-IDF employed as a preprocessing technique optimized for hybrid architectures. Experiments were conducted using hybrid architectures with 2-qubit and 4-qubit quantum layers, alongside a classical deep neural network (DNN) model for comparative analysis. The HQCDNN model attained accuracy levels ranging from 96.4% to 78.2% and F1-scores between 96.6% and 80.2%, showcasing enhanced performance compared to the classical and deep learning models referenced in the literature. These results highlight the capability of HQCDNNs to improve the identification of security flaws in smart contracts. Future work could focus on evaluating the model on actual quantum devices and expanding its application to larger datasets for further validation.
引用
收藏
页数:24
相关论文
共 75 条
[1]  
Amani S, 2018, PROCEEDINGS OF THE 7TH ACM SIGPLAN INTERNATIONAL CONFERENCE ON CERTIFIED PROGRAMS AND PROOFS, CPP 2018, P66, DOI 10.1145/3167084
[2]  
Antonopoulos A. M., 2018, MASTERING ETHEREUM
[3]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[4]   A Survey of Attacks on Ethereum Smart Contracts (SoK) [J].
Atzei, Nicola ;
Bartoletti, Massimo ;
Cimoli, Tiziana .
PRINCIPLES OF SECURITY AND TRUST (POST 2017), 2017, 10204 :164-186
[5]   Vulnerability Detection and Classification of Ethereum Smart Contracts Using Deep Learning [J].
Bani-Hani, Raed M. ;
Shatnawi, Ahmed S. ;
Al-Yahya, Lana .
FUTURE INTERNET, 2024, 16 (09)
[6]   Parameterized quantum circuits as machine learning models [J].
Benedetti, Marcello ;
Lloyd, Erika ;
Sack, Stefan ;
Fiorentini, Mattia .
QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (04)
[7]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[8]  
Buterin B.V, 2014, CISC VIS NETW IND GL, P1, DOI DOI 10.5663/APS.V1I1.10138
[9]   Variational quantum algorithms [J].
Cerezo, M. ;
Arrasmith, Andrew ;
Babbush, Ryan ;
Benjamin, Simon C. ;
Endo, Suguru ;
Fujii, Keisuke ;
McClean, Jarrod R. ;
Mitarai, Kosuke ;
Yuan, Xiao ;
Cincio, Lukasz ;
Coles, Patrick J. .
NATURE REVIEWS PHYSICS, 2021, 3 (09) :625-644
[10]  
Chen YZ, 2024, Arxiv, DOI arXiv:2407.05318