Wire electrical discharge machining (WEDM) enables the production of complex parts with tight tolerances, although maintaining dimensional accuracy in corners and tapers remains challenging due to wire deflection and vibration. This study optimizes WEDM parameters for achieving high accuracy in machining complex geometrical parts and taper cuts in 6061 aluminum alloy using an Excetek W350G WEDM machine with a copper wire electrode. Parameters including wire tension, pulse on-time, pulse off-time, wire feed rate, open circuit voltage, and flushing pressure were varied using a L18 Taguchi orthogonal array and the response graph method to identify optimal cutting conditions. Experimental results indicated that feature-specific optimization is crucial, as different geometrical features (rectangular fins, triangular fins, gears) exhibited varying critical parameters. Key findings highlighted the importance of wire tension and pulse on-time in maintaining cutting accuracy, although at varying levels for specific features. Response graphs demonstrated the effects of major WEDM parameters on corner and profile accuracies, whereas Taguchi analysis provided the optimum settings of parameters for each feature and taper cutting. These findings will help enhance precision, efficiency, and versatility of the WEDM process in machining complex profiles and corners, contributing to precision manufacturing.