Mean-Square Finite-Time Stability and Stabilization of Impulsive Stochastic Distributed Parameter Systems

被引:1
作者
Dai, Xi-Sheng [1 ]
Zuo, Huang [1 ]
Deng, Feiqi [2 ]
机构
[1] Guangxi Univ Sci & Technol, Sch Automat, Liuzhou 545006, Peoples R China
[2] South China Univ Technol, Coll Automat Sci & Engn, Guangzhou 510640, Peoples R China
来源
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS | 2025年 / 55卷 / 06期
关键词
Lyapunov methods; Stability criteria; Linear matrix inequalities; Stochastic processes; Numerical stability; Circuit stability; Asymptotic stability; Transient analysis; Time-varying systems; Symmetric matrices; Finite-time stability (FTS); impulsive systems; quasi-periodic Lyapunov function; stabilization; stochastic distributed parameter systems (DPSs); LINEAR-SYSTEMS;
D O I
10.1109/TSMC.2025.3547949
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The study focuses on finite-time stability (FTS) and stabilization problems in a class of stochastic distributed parameter systems with impulsive effects. To tackle the impulsive effects within the system, we adopt two key methods: 1) a looped form quasi-periodic Lyapunov function and 2) an interpolation quasi-periodic Lyapunov function method. This combined approach allows us to obtain a detailed mean-square FTS criterion, closely related to the specific dwell time of the impulse sequence in the system. Moreover, a finite-time input controller featuring a constant gain is designed to simultaneously stabilize both the continuous and discrete components of the controlled system. Finally, we present two numerical examples to demonstrate the validity of our outcomes.
引用
收藏
页码:4064 / 4075
页数:12
相关论文
共 44 条
[1]   Finite-time robust stochastic synchronization of uncertain Markovian complex dynamical networks with mixed time-varying delays and reaction diffusion terms via impulsive control [J].
Ali, M. Syed ;
Yogambigai, J. .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (05) :2415-2436
[2]   Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems [J].
Amato, F. ;
De Tommasi, G. ;
Pironti, A. .
AUTOMATICA, 2013, 49 (08) :2546-2550
[3]   Robust finite-time stability of impulsive dynamical linear systems subject to norm-bounded uncertainties [J].
Amato, F. ;
Ambrosino, R. ;
Ariola, M. ;
De Tommasi, G. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2011, 21 (10) :1080-1092
[4]   Input-output finite-time stabilisation of a class of hybrid systems via static output feedback [J].
Amato, Francesco ;
Carannante, Giuseppe ;
De Tommasi, Gianmaria .
INTERNATIONAL JOURNAL OF CONTROL, 2011, 84 (06) :1055-1066
[5]   Synchronization Control for Neutral Stochastic Delay Markov Networks via Single Pinning Impulsive Strategy [J].
Chen, Huabin ;
Shi, Peng ;
Lim, Cheng-Chew .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2020, 50 (12) :5406-5419
[6]   Stochastic Finite-Time Stabilization for a Class of Nonlinear Markovian Jump Stochastic Systems With Impulsive Effects [J].
Chen, Wu-Hua ;
Wei, Chenghai ;
Lu, Xiaomei .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2015, 137 (04)
[7]   Finite-Time Stability and Dynamic Output Feedback Stabilization of Stochastic Systems [J].
Chen, Yun ;
Zou, Hongbo ;
Lu, Renquan ;
Xue, Anke .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2014, 33 (01) :53-69
[8]  
CHENG P, 2022, IN PRESS
[9]   STABILITY FOR ABSTRACT LINEAR FUNCTIONAL-DIFFERENTIAL EQUATIONS [J].
DIBLASIO, G ;
KUNISCH, K ;
SINESTRARI, E .
ISRAEL JOURNAL OF MATHEMATICS, 1985, 50 (03) :231-263
[10]  
Dorato P., 1961, Proc. IRE Internat. Conv. Rec. Part 4, P83