Semi-Automatic Extraction of Hedgerows from High-Resolution Satellite Imagery

被引:0
作者
Gardossi, Anna Lilian [1 ]
Tomao, Antonio [1 ]
Choudhury, M. D. Abdul Mueed [2 ,3 ]
Marcheggiani, Ernesto [3 ]
Sigura, Maurizia [1 ]
机构
[1] Univ Udine, Dept Agr Food Environm & Anim Sci, I-33100 Udine, Italy
[2] Mediterranea Univ Reggio Calabria, Dept Agr, I-89124 Reggio Di Calabria, Italy
[3] Marche Polytech Univ, Dept Agr Food & Environm Sci, I-60131 Ancona, Italy
关键词
Copernicus; Sentinel-2; PlanetScope; hedgerow detection; SWE; OBIA; eCognition; SHADOW DETECTION; AIRBORNE IMAGERY; CLASSIFICATION; SEGMENTATION; MANAGEMENT; FEATURES; COVER;
D O I
10.3390/rs17091506
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Small landscape elements are critical in ecological systems, encompassing vegetated and non-vegetated features. As vegetated elements, hedgerows contribute significantly to biodiversity conservation, erosion protection, and wind speed reduction within agroecosystems. This study focuses on the semi-automatic extraction of hedgerows by applying the Object-Based Image Analysis (OBIA) approach to two multispectral satellite datasets. Multitemporal image data from PlanetScope and Copernicus Sentinel-2 have been used to test the applicability of the proposed approach for detailed land cover mapping, with an emphasis on extracting Small Woody Elements. This study demonstrates significant results in classifying and extracting hedgerows, a smaller landscape element, from both Sentinel-2 and PlanetScope images. A good overall accuracy (OA) was obtained using PlanetScope data (OA = 95%) and Sentinel-2 data (OA = 85%), despite the coarser resolution of the latter. This will undoubtedly demonstrate the effectiveness of the OBIA approach in leveraging freely available image data for detailed land cover mapping, particularly in identifying and classifying hedgerows, thus supporting biodiversity conservation and ecological infrastructure enhancement.
引用
收藏
页数:22
相关论文
共 76 条
[51]   Object Oriented Classification for Mapping Mixed and Pure Forest Stands Using Very-High Resolution Imagery [J].
Oreti, Loredana ;
Giuliarelli, Diego ;
Tomao, Antonio ;
Barbati, Anna .
REMOTE SENSING, 2021, 13 (13)
[52]   Very high-resolution true color leaf-off imagery for mapping Taxus baccata L. and Ilex aquifolium L. understory population [J].
Oreti, Loredana ;
Barbati, Anna ;
Marini, Francesco ;
Giuliarelli, Diego .
BIODIVERSITY AND CONSERVATION, 2020, 29 (08) :2605-2622
[53]   Wide-Scale Identification of Small Woody Features of Landscape from Remote Sensing [J].
Patriarca, Alessio ;
Caputi, Eros ;
Gatti, Lorenzo ;
Marcheggiani, Ernesto ;
Recanatesi, Fabio ;
Rossi, Carlo Maria ;
Ripa, Maria Nicolina .
LAND, 2024, 13 (08)
[54]   Action needed for the EU Common Agricultural Policy to address sustainability challenges [J].
Pe'er, Guy ;
Bonn, Aletta ;
Bruelheide, Helge ;
Dieker, Petra ;
Eisenhauer, Nico ;
Feindt, Peter H. ;
Hagedorn, Gregor ;
Hansjuergens, Bernd ;
Herzon, Irina ;
Lomba, Angela ;
Marquard, Elisabeth ;
Moreira, Francisco ;
Nitsch, Heike ;
Oppermann, Rainer ;
Perino, Andrea ;
Roeder, Norbert ;
Schleyer, Christian ;
Schindler, Stefan ;
Wolf, Christine ;
Zinngrebe, Yves ;
Lakner, Sebastian .
PEOPLE AND NATURE, 2020, 2 (02) :305-316
[55]   Testing the Impact of Pansharpening Using PRISMA Hyperspectral Data: A Case Study Classifying Urban Trees in Naples, Italy [J].
Perretta, Miriam ;
Delogu, Gabriele ;
Funsten, Cassandra ;
Patriarca, Alessio ;
Caputi, Eros ;
Boccia, Lorenzo .
REMOTE SENSING, 2024, 16 (19)
[56]   Filling the gap: improving estimates of working tree resources in agricultural landscapes [J].
Perry, C. H. ;
Woodall, C. W. ;
Liknes, G. C. ;
Schoeneberger, M. M. .
AGROFORESTRY SYSTEMS, 2009, 75 (01) :91-101
[57]   Hedgerows Monitoring in Remote Sensing: A Comprehensive Review [J].
Pirbasti, Mehran Alizadeh ;
McArdle, Gavin ;
Akbari, Vahid .
IEEE ACCESS, 2024, 12 :156184-156207
[58]  
Puletti Nicola, 2024, Annals of Silvicultural Research, V49, P66, DOI 10.12899/asr-2513
[59]  
Rana M, 2019, The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, VXLII-3/W, P609, DOI [10.5194/isprs-archives-xlii-3-w6-609-2019, 10.5194/isprs-archives-XLII-3-W6-609-2019, DOI 10.5194/ISPRS-ARCHIVES-XLII-3-W6-609-2019]
[60]   Monitoring of Caspian Sea Coastline Changes Using Object-Oriented Techniques [J].
Rasuly, Aliakbar ;
Naghdifar, Rezvan ;
Rasoli, Mehdi .
INTERNATIONAL CONFERENCE ON ECOLOGICAL INFORMATICS AND ECOSYSTEM CONSERVATION (ISEIS 2010), 2010, 2 :416-426