Semi-Automatic Extraction of Hedgerows from High-Resolution Satellite Imagery

被引:0
作者
Gardossi, Anna Lilian [1 ]
Tomao, Antonio [1 ]
Choudhury, M. D. Abdul Mueed [2 ,3 ]
Marcheggiani, Ernesto [3 ]
Sigura, Maurizia [1 ]
机构
[1] Univ Udine, Dept Agr Food Environm & Anim Sci, I-33100 Udine, Italy
[2] Mediterranea Univ Reggio Calabria, Dept Agr, I-89124 Reggio Di Calabria, Italy
[3] Marche Polytech Univ, Dept Agr Food & Environm Sci, I-60131 Ancona, Italy
关键词
Copernicus; Sentinel-2; PlanetScope; hedgerow detection; SWE; OBIA; eCognition; SHADOW DETECTION; AIRBORNE IMAGERY; CLASSIFICATION; SEGMENTATION; MANAGEMENT; FEATURES; COVER;
D O I
10.3390/rs17091506
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Small landscape elements are critical in ecological systems, encompassing vegetated and non-vegetated features. As vegetated elements, hedgerows contribute significantly to biodiversity conservation, erosion protection, and wind speed reduction within agroecosystems. This study focuses on the semi-automatic extraction of hedgerows by applying the Object-Based Image Analysis (OBIA) approach to two multispectral satellite datasets. Multitemporal image data from PlanetScope and Copernicus Sentinel-2 have been used to test the applicability of the proposed approach for detailed land cover mapping, with an emphasis on extracting Small Woody Elements. This study demonstrates significant results in classifying and extracting hedgerows, a smaller landscape element, from both Sentinel-2 and PlanetScope images. A good overall accuracy (OA) was obtained using PlanetScope data (OA = 95%) and Sentinel-2 data (OA = 85%), despite the coarser resolution of the latter. This will undoubtedly demonstrate the effectiveness of the OBIA approach in leveraging freely available image data for detailed land cover mapping, particularly in identifying and classifying hedgerows, thus supporting biodiversity conservation and ecological infrastructure enhancement.
引用
收藏
页数:22
相关论文
共 76 条
[1]   PRISMA Spatial Resolution Enhancement by Fusion With Sentinel-2 Data [J].
Acito, Nicola ;
Diani, Marco ;
Corsini, Giovanni .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 :62-79
[2]   Hedgerow object detection in very high-resolution satellite images using convolutional neural networks [J].
Ahlswede, Steve ;
Asam, Sarah ;
Roeder, Achim .
JOURNAL OF APPLIED REMOTE SENSING, 2021, 15 (01)
[3]   Automatic Mapping of Linear Woody Vegetation Features in Agricultural Landscapes Using Very High Resolution Imagery [J].
Aksoy, Selim ;
Akcay, H. Goekhan ;
Wassenaar, Tom .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (01) :511-522
[4]   Hedgerows and Enclosures in Rural Areas: Traditional vs. Modern Land Use in Mediterranean Mountains [J].
Alvarez, Fernando Allende ;
Gomez-Mediavilla, Gillian ;
Lopez-Estebanez, Nieves ;
Holgado, Pedro Molina ;
Barajas, Judith Ares .
LAND, 2021, 10 (01) :1-18
[5]  
[Anonymous], 1991, EN-EUR-Lex
[6]  
[Anonymous], 2020, European Union, Copernicus Land Monitoring Service 2018
[7]  
Baatz M., 2004, ECOGNITION PROFESSIO
[8]  
Baatz M., 2000, Angewandte Geographische Informationsverarbeitung XII. Beitrage zum AGIT-Symposium Salzburg 2000, Karlsruhe, P12, DOI DOI 10.1207/S15326888CHC1304_3
[9]   Estimating hedgerow length and pattern characteristics in Great Britain using Countryside Survey data [J].
Barr, CJ ;
Gillespie, MK .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2000, 60 (01) :23-32
[10]   Ecosystem services and the resilience of agricultural landscapes [J].
Bennett, Elena M. ;
Baird, Julia ;
Baulch, Helen ;
Chaplin-Kramer, Rebecca ;
Fraser, Evan ;
Loring, Phil ;
Morrison, Peter ;
Parrott, Lael ;
Sherren, Kate ;
Winkler, Klara J. ;
Cimon-Morin, Jerome ;
Fortin, Marie-Josee ;
Kurylyk, Barret L. ;
Lundholm, Jeremy ;
Poulin, Monique ;
Rieb, Jesse T. ;
Gonzalez, Andrew ;
Hickey, Gordon M. ;
Humphries, Murray ;
Bahadur, Krishna K. C. ;
Lapen, David .
FUTURE OF AGRICULTURAL LANDSCAPES, PT II, 2021, 64 :1-43