Molecular pillaring driven microcrystalline structure engineering of hard carbon for high-rate sodium storage

被引:1
作者
Zhong, Lei [1 ]
Qiu, Xueqing [1 ,2 ,3 ]
Hao, Shuhua [1 ]
Jiang, Zhu [1 ]
Zhang, Wenli [1 ,2 ,3 ]
机构
[1] Guangdong Univ Technol GDUT, Sch Chem Engn & Light Ind, Guangzhou 510006, Peoples R China
[2] Jieyang Ctr, Guangdong Prov Lab Chem & Fine Chem Engn, Jieyang 515200, Peoples R China
[3] Guangdong Univ Technol, Guangdong Basic Res Ctr Excellence Ecol Secur & Gr, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Hard carbon; Anode; Lignin; High rate; Sodium-ion storage; X-RAY-SCATTERING; HIGH-CAPACITY; ION STORAGE; LITHIUM; INTERCALATION; INSERTION; MECHANISM; INSIGHTS;
D O I
10.1016/j.cej.2025.164007
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hard carbon (HC) is a promising anode for commercial sodium-ion batteries. However, the slow intercalation kinetics of Na+ ions in HC anodes results in the inferior rate capability. Developing a pseudo-graphite-rich structure with expanded interlayer spacing in HC is beneficial for high-rate sodium-ion storage. Herein, a molecular pillaring strategy was developed to expand the interlayer spacing of lignin-derived HC, using perylene3,4,9,10-tetracarboxylic dianhydride (PTCDA) as the guest molecule. During the initial carbonization process, lignin decomposed into a carbonaceous skeleton at low pyrolysis temperatures. PTCDA underwent decomposition at lignin pyrolysis temperatures, in which the decomposed radicals of PTCDA connect and pillar the ligninderied carbon skeleton. Surprisingly, extensive pseudo-graphite structures with unprecedented interlayer spacing (0.397 nm) enlargement were built in the matrix of HC. As a result, the intercalation-dominated sodium-ionstorage HC anode exhibited more superior rate performance than lignin-derived HC (193 vs 97 mAh g- 1 at 1 A g- 1). This study opens up a new path for the development of high-rate sodium-ion-storage HC anodes.
引用
收藏
页数:11
相关论文
共 57 条
[1]   Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries [J].
Alcántara, R ;
Lavela, P ;
Ortiz, GF ;
Tirado, JL .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (04) :A222-A225
[2]   Revealing the Intercalation Mechanisms of Lithium, Sodium, and Potassium in Hard Carbon [J].
Alvin, Stevanus ;
Cahyadi, Handi Setiadi ;
Hwang, Jieun ;
Chang, Wonyoung ;
Kwak, Sang Kyu ;
Kim, Jaehoon .
ADVANCED ENERGY MATERIALS, 2020, 10 (20)
[3]   Tracking Sodium Cluster Dynamics in Hard Carbon with a Low Specific Surface Area for Sodium-Ion Batteries [J].
Aniskevich, Yauhen ;
Yu, Jun Ho ;
Kim, Ji-Young ;
Komaba, Shinichi ;
Myung, Seung-Taek .
ADVANCED ENERGY MATERIALS, 2024, 14 (18)
[4]   Hard carbon key properties allow for the achievement of high Coulombic efficiency and high volumetric capacity in Na-ion batteries [J].
Beda, Adrian ;
Rabuel, Francois ;
Morcrette, Mathieu ;
Knopf, Stephan ;
Taberna, Pierre-Louis ;
Simon, Patrice ;
Ghimbeu, Camelia Matei .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (03) :1743-1758
[5]   Structural Engineering of Multishelled Hollow Carbon Nanostructures for High-Performance Na-Ion Battery Anode [J].
Bin, De-Shan ;
Li, Yunming ;
Sun, Yong-Gang ;
Duan, Shu-Yi ;
Lu, Yaxiang ;
Ma, Jianmin ;
Cao, An-Min ;
Hu, Yong-Sheng ;
Wan, Li-Jun .
ADVANCED ENERGY MATERIALS, 2018, 8 (26)
[6]   Unveiling pseudocapacitive behavior of hard carbon anode materials for sodium-ion batteries [J].
Bobyleva, Zoia V. ;
Drozhzhin, Oleg A. ;
Dosaev, Kirill A. ;
Kamiyama, Azusa ;
Ryazantsev, Sergey V. ;
Komaba, Shinichi ;
Antipov, Evgeny V. .
ELECTROCHIMICA ACTA, 2020, 354
[7]   New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon [J].
Bommier, Clement ;
Surta, Todd Wesley ;
Dolgos, Michelle ;
Ji, Xiulei .
NANO LETTERS, 2015, 15 (09) :5888-5892
[8]   Regulating the Interlayer Spacings of Hard Carbon Nanofibers Enables Enhanced Pore Filling Sodium Storage [J].
Cai, Congcong ;
Chen, Yongan ;
Hu, Ping ;
Zhu, Ting ;
Li, Xinyuan ;
Yu, Qiang ;
Zhou, Liang ;
Yang, Xiaoyu ;
Mai, Liqiang .
SMALL, 2022, 18 (06)
[9]   Hard carbon derived for lignin with robust and low-potential sodium ion storage [J].
Chen, Minghao ;
Luo, Fenqiang ;
Liao, Yongchao ;
Liu, Chaoran ;
Xu, Dawei ;
Wang, Zhuang ;
Liu, Qian ;
Wang, Duo ;
Ye, Yueyuan ;
Li, Shuirong ;
Wang, Dechao ;
Zheng, Zhifeng .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 919
[10]   Filling carbon: a microstructure-engineered hard carbon for efficient alkali metal ion storage [J].
Chen, Xiaoyang ;
Sawut, Nurbiye ;
Chen, Kean ;
Li, Hui ;
Zhang, Jun ;
Wang, Zhe ;
Yang, Mei ;
Tang, Guo ;
Ai, Xinping ;
Yang, Hanxi ;
Fang, Yongjin ;
Cao, Yuliang .
ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (09) :4041-4053