Parallel structure of hybrid quantum-classical neural networks for image classification

被引:0
作者
Xu, Zuyu [1 ]
Hu, Yuanming [1 ]
Yang, Tao [1 ]
Cai, Pengnian [1 ]
Shen, Kang [1 ]
Lv, Bin [1 ]
Chen, Shixian [2 ]
Wang, Jun [1 ]
Zhu, Yunlai [1 ]
Wu, Zuheng [1 ]
Dai, Yuehua [1 ]
机构
[1] Anhui Univ, Sch Integrated Circuits, Hefei 230601, Anhui, Peoples R China
[2] Anhui Normal Univ, Sch Comp & Informat, Wuhu 241003, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum computing; Quantum-classical networks; Parallel structure; Image classification;
D O I
10.1007/s11128-025-04813-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Hybrid quantum-classical neural networks (QCNNs) integrate principles from quantum computing principle and classical neural networks, offering a novel computational approach for image classification tasks. However, current QCNNs with sequential structures encounter limitations in accuracy and robustness, especially when dealing with tasks involving numerous classes. In this study, we propose a novel solution-the hybrid parallel quantum-classical neural network (PQCNN)-for image classification tasks. This architecture seamlessly integrates the parallel processing capabilities of quantum computing with the hierarchical feature extraction abilities of classical neural networks, aiming to overcome the constraints of conventional sequential structures in multi-class classification tasks. Extensive experimentation demonstrates the superiority of PQCNN over traditional concatenative structures in binary classification datasets, displaying heightened accuracy and robustness against noise. Particularly noteworthy is PQCNN's significantly improved accuracy on datasets with 5 and 10 classes. These findings underscore the transformative potential of the PQCNN architecture as an advanced solution for enhancing the performance of quantum-classical-based classifiers, particularly in the domain of image classification.
引用
收藏
页数:26
相关论文
共 50 条
[1]   Supervised learning with a quantum classifier using multi-level systems [J].
Adhikary, Soumik ;
Dangwal, Siddharth ;
Bhowmik, Debanjan .
QUANTUM INFORMATION PROCESSING, 2020, 19 (03)
[2]   Training deep quantum neural networks [J].
Beer, Kerstin ;
Bondarenko, Dmytro ;
Farrelly, Terry ;
Osborne, Tobias J. ;
Salzmann, Robert ;
Scheiermann, Daniel ;
Wolf, Ramona .
NATURE COMMUNICATIONS, 2020, 11 (01)
[3]   Noisy intermediate-scale quantum algorithms [J].
Bharti, Kishor ;
Cervera-Lierta, Alba ;
Kyaw, Thi Ha ;
Haug, Tobias ;
Alperin-Lea, Sumner ;
Anand, Abhinav ;
Degroote, Matthias ;
Heimonen, Hermanni ;
Kottmann, Jakob S. ;
Menke, Tim ;
Mok, Wai-Keong ;
Sim, Sukin ;
Kwek, Leong-Chuan ;
Aspuru-Guzik, Alan .
REVIEWS OF MODERN PHYSICS, 2022, 94 (01)
[4]   An all-pair quantum SVM approach for big data multiclass classification [J].
Bishwas, Arit Kumar ;
Mani, Ashish ;
Palade, Vasile .
QUANTUM INFORMATION PROCESSING, 2018, 17 (10)
[5]   Multiclass classification using quantum convolutional neural networks with hybrid quantum-classical learning [J].
Bokhan, Denis ;
Mastiukova, Alena S. ;
Boev, Aleksey S. ;
Trubnikov, Dmitrii N. ;
Fedorov, Aleksey K. .
FRONTIERS IN PHYSICS, 2022, 10
[6]   Variational quantum algorithms [J].
Cerezo, M. ;
Arrasmith, Andrew ;
Babbush, Ryan ;
Benjamin, Simon C. ;
Endo, Suguru ;
Fujii, Keisuke ;
McClean, Jarrod R. ;
Mitarai, Kosuke ;
Yuan, Xiao ;
Cincio, Lukasz ;
Coles, Patrick J. .
NATURE REVIEWS PHYSICS, 2021, 3 (09) :625-644
[7]   Quantum convolutional neural network for image classification [J].
Chen, Guoming ;
Chen, Qiang ;
Long, Shun ;
Zhu, Weiheng ;
Yuan, Zeduo ;
Wu, Yilin .
PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (02) :655-667
[8]   Programming languages and compiler design for realistic quantum hardware [J].
Chong, Frederic T. ;
Franklin, Diana ;
Martonosi, Margaret .
NATURE, 2017, 549 (7671) :180-187
[9]   Quantum convolutional neural networks [J].
Cong, Iris ;
Choi, Soonwon ;
Lukin, Mikhail D. .
NATURE PHYSICS, 2019, 15 (12) :1273-+
[10]   Efficient Measure for the Expressivity of Variational Quantum Algorithms [J].
Du, Yuxuan ;
Tu, Zhuozhuo ;
Yuan, Xiao ;
Tao, Dacheng .
PHYSICAL REVIEW LETTERS, 2022, 128 (08)