CoPP coating for limited oxygen diffusion and reduced electron scavenging in light-activated room temperature TiO2 nanoparticle gas sensing films

被引:0
作者
Eglitis, Raivis [1 ]
Abricka, Loreta [1 ]
Iesalnieks, Mairis [1 ]
Smits, Krisjanis [2 ,3 ]
Sutka, Andris [1 ]
机构
[1] Riga Tech Univ, Inst Phys & Mat Sci, Fac Nat Sci & Technol, Paula Valdena 3, LV-1048 Riga, Latvia
[2] Univ Latvia, Inst Solid State Phys, LV-1063 Riga, Latvia
[3] Riga Tech Univ, Inst Biomat & Bioengn, Fac Nat Sci & Technol, LV-1048 Riga, Latvia
关键词
Gas sensor; Light-activated; Room-temperature; TiO2; Cobalt porphyrin (CoPP); COMPOSITE; SENSORS; SIZE; ZNO;
D O I
10.1016/j.sna.2025.116731
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
TiO2 is an important metal oxide semiconductor gas sensor material. It has many benefits, such as high response, natural abundance and low toxicity. TiO2 gas sensor material can be activated by light and operated at room temperature, thus reducing the energy consumption of the sensor and improving its safety. The electric resistance of light-activated TiO2 is altered in the presence of an analyte due to photo-induced hole scavenging by gas and electron accumulation in the conduction band. However, the response is limited due to competing processes - electron consumption by ambient oxygen - thus hindering their practical applicability. Here, we demonstrate the light-activated TiO2 gas sensor based on ultra-small nanoparticle (<5 nm) films modified with 5,10,15,20-tetraphenyl-21H,23H-porphyrin Cobalt (II) (CoPP). Coating the TiO2 film surface with CoPP increases the room temperature gas response towards 5 ppm EtOH 12.58 times from S = 46.72 +/- 1.77 to S = (5.88 +/- 0.39) x 10(2). The sensors show selectivity towards alcohols, such as ethanol, and exhibit response S = 1.086 +/- 0.049-100 ppm EtOH even in the presence of relative humidity as high as 50 %.
引用
收藏
页数:9
相关论文
共 42 条
[1]   NiO/Fe2O3 polymer thick films as room temperature gas sensors [J].
Arshak, K ;
Gaidan, I .
THIN SOLID FILMS, 2006, 495 (1-2) :286-291
[2]   Cellulose Fibers Enable Near-Zero-Cost Electrical Sensing of Water-Soluble Gases [J].
Barandun, Giandrin ;
Soprani, Matteo ;
Naficy, Sina ;
Grell, Max ;
Kasimatis, Michael ;
Chiu, Kwan Lun ;
Ponzoni, Andrea ;
Guder, Firat .
ACS SENSORS, 2019, 4 (06) :1662-1669
[3]   The character of the response of ZnO and SnO2 sensors modified with porphyrins to volatile organic compounds [J].
Belkova, G. V. ;
Zav'yalov, S. A. ;
Sarach, O. B. ;
Gulyaev, A. M. ;
Glagolev, N. N. ;
Solov'eva, A. B. ;
Timashev, S. F. .
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2008, 82 (13) :2323-2328
[4]   Design of CdTeSe-Porphyrin-Graphene Composite for Photoinduced Electron Transfer and Photocurrent Generation [J].
Bera, Rajesh ;
Jana, Bikash ;
Mondal, Bodhisatwa ;
Patra, Amitava .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (04) :3002-3010
[5]   On the permittivity of titanium dioxide [J].
Bonkerud, Julie ;
Zimmermann, Christian ;
Weiser, Philip Michael ;
Vines, Lasse ;
Monakhov, Eduard, V .
SCIENTIFIC REPORTS, 2021, 11 (01)
[6]   Fabrication and characterization of VOC sensor array based on SnO2 and ZnO nanoparticles functionalized by metalloporphyrins [J].
Cho B. ;
Lee K. ;
Pyo S. ;
Kim J. .
Micro and Nano Systems Letters, 6 (1)
[7]  
Chen JH, 2015, MICROMECHANISM OF CLEAVAGE FRACTURE OF METALS: A COMPREHENSIVE MICROPHYSICAL MODEL FOR CLEAVAGE CRACKING IN METALS, P1
[8]   Size effects in the Raman spectra of TiO2 nanoparticles [J].
Choi, HC ;
Jung, YM ;
Kim, SB .
VIBRATIONAL SPECTROSCOPY, 2005, 37 (01) :33-38
[9]   Bottom-Up Fabrication of a Metal-Supported Oxo-Metal Porphyrin [J].
Duncan, D. A. ;
Deimel, P. S. ;
Wiengarten, A. ;
Paszkiewicz, M. ;
Aguilar, P. Casado ;
Acres, R. G. ;
Klappenberger, F. ;
Auwaerter, W. ;
Seitsonen, A. P. ;
Barth, J. V. ;
Allegretti, F. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (51) :31011-31025
[10]   Light-Induced Room-Temperature Gas Sensing by Donor-Doped Anatase TiO2 Ultrasmall Nanoparticles [J].
Eglitis, Raivis ;
Kiisk, Valter ;
Kodu, Margus ;
Vanags, Martins ;
Jaaniso, Raivo ;
Smits, Krisjanis ;
Sutka, Andris .
ACS APPLIED ENGINEERING MATERIALS, 2024, 2 (03) :649-658