Solid-state sodium-ion batteries with composite polymer electrolytes and ALD-modified Na0.7MnO2 cathodes

被引:1
作者
Helaley, Ahmad [1 ]
Liang, Xinhua [1 ]
机构
[1] Washington Univ St Louis, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA
关键词
Ultrathin films; Composite polymer electrolytes; Na-ion conduction; Perovskite; Solid-state batteries; ATOMIC LAYER DEPOSITION; LI-ION; TRANSPORT;
D O I
10.1016/j.cej.2025.163173
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Achieving high ionic conductivity in solid state electrolytes and reducing the interfacial resistance between solid state electrolytes and electrode materials are critical challenges in the development of solid-state batteries. This study explores the integration of the high ionic conductivity of inorganic ceramics and the flexibility of organic polymers to create a composite polymer electrolyte (CPE) for sodium-ion batteries. We developed a CPE comprising a poly(ethylene oxide) (PEO) polymer matrix, and lithium lanthanum titanium oxide (LLTO) and titanium dioxide (TiO2) as ceramic components. The resulting CPE exhibited a sodium-ion conductivity of 0.20 mS cm(-1) at 55 degrees C, maintaining the thermal stability and inherent flexibility of polymer electrolytes up to 330 degrees C. The combination of 5 wt% LLTO and 10 wt% TiO2 in the CPE reduced interfacial resistance and enhanced ion transport, resulting in an initial reversible capacity of 138.1 mA h g(-1) and stable charge/discharge cycling performance with negligible capacity loss over 70 cycles in Na0.7MnO2 (NMO)/CPE/Na coin cells at 55 degrees C. To further increase the interface stability and enhance electrochemical performance, TiO2 ultrathin films were coated on NMO particles using atomic layer deposition (ALD). The NMO particles with ten cycles of TiO2 ALD exhibited an ionic conductivity of 0.37 mS cm(-1) and demonstrated the highest discharge capacity of 160 mAh g(-1), maintaining this performance over 100 cycles of charge/discharge with significantly reduced interfacial resistance, suppressed undesirable side reactions, and minimized Jahn-Teller distortion in the NMO structure. This study highlights the potential of combining ALD TiO2 coatings with advanced CPE formulations to develop high-performance solid-state sodium-ion batteries suitable for large-scale energy storage applications.
引用
收藏
页数:13
相关论文
共 50 条
[1]   Highly Conductive Garnet-Type Electrolytes: Access to Li6.5La3Zr1.5Ta0.5O12 Prepared by Molten Salt and Solid-State Methods [J].
Badami, Pavan ;
Weller, J. Mark ;
Wahab, Abdul ;
Redhammer, Guenther ;
Ladenstein, Lukas ;
Rettenwander, Daniel ;
Wilkening, Martin ;
Chan, Candace K. ;
Kannan, Arunachala Nadar Mada .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (43) :48580-48590
[2]   β-NaMnO2: A High-Performance Cathode for Sodium-Ion Batteries [J].
Billaud, Juliette ;
Clement, Raphaele J. ;
Armstrong, A. Robert ;
Canales-Vazquez, Jesus ;
Rozier, Patrick ;
Grey, Clare P. ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (49) :17243-17248
[3]   Progress and Perspective of All-Solid-State Lithium Batteries with High Performance at Room Temperature [J].
Chen, Likun ;
Huang, Yan-Fei ;
Ma, Jiabin ;
Ling, Huajin ;
Kang, Feiyu ;
He, Yan-Bing .
ENERGY & FUELS, 2020, 34 (11) :13456-13472
[4]   Advances in solid-state batteries fabrication strategies for their manufacture [J].
Dolla, Tarekegn Heliso ;
Ajayi, Samuel Oluwakayode ;
Sikeyi, Ludwe Luther ;
Mathe, Mkhulu Kenneth ;
Palaniyandy, Nithyadharseni .
JOURNAL OF ENERGY STORAGE, 2025, 106
[5]   Fundamentals of inorganic solid-state electrolytes for batteries [J].
Famprikis, Theodosios ;
Canepa, Pieremanuele ;
Dawson, James A. ;
Islam, M. Saiful ;
Masquelier, Christian .
NATURE MATERIALS, 2019, 18 (12) :1278-1291
[6]   Recent advances and prospects of layered transition metal oxide cathodes for sodium-ion batteries [J].
Gao, Rui-Min ;
Zheng, Zi-Jian ;
Wang, Peng-Fei ;
Wang, Cao-Yu ;
Ye, Huan ;
Cao, Fei-Fei .
ENERGY STORAGE MATERIALS, 2020, 30 :9-26
[7]   Synergic Titanium Nitride Coating and Titanium Doping by Atomic Layer Deposition for Stable- and High-Performance Li-Ion Battery [J].
Gao, Yan ;
Park, Jonghyun ;
Liang, Xinhua .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (16) :A3871-A3877
[8]   Boosting the Electrochemical Performance of Li1.2Mn0.54Ni0.13Co0.13O2 by Atomic Layer-Deposited CeO2 Coating [J].
Gao, Yan ;
Patel, Rajankumar L. ;
Shen, Kuan-Yu ;
Wang, Xiaofeng ;
Axelbaum, Richard L. ;
Liang, Xinhua .
ACS OMEGA, 2018, 3 (01) :906-916
[9]   Designing composite polymer electrolytes for all-solid-state lithium batteries [J].
Grundish, Nicholas S. ;
Goodenough, John B. ;
Khani, Hadi .
CURRENT OPINION IN ELECTROCHEMISTRY, 2021, 30
[10]   Understanding sodium-ion diffusion in layered P2 and P3 oxides via experiments and first-principles calculations: a bridge between crystal structure and electrochemical performance [J].
Guo, Shaohua ;
Sun, Yang ;
Yi, Jin ;
Zhu, Kai ;
Liu, Pan ;
Zhu, Yanbei ;
Zhu, Guo-zhen ;
Chen, Mingwei ;
Ishida, Masayoshi ;
Zhou, Haoshen .
NPG ASIA MATERIALS, 2016, 8 :e266-e266