DI-SLAM: A Real-Time Enhanced RGB-D SLAM for Dynamic Indoor Environments

被引:0
作者
Wei, Wang [1 ]
Xia, Changgao [1 ]
Han, Jiangyi [1 ]
机构
[1] Jiangsu Univ, Sch Automot & Traff Engn, Zhenjiang 212013, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2025年 / 15卷 / 08期
基金
中国国家自然科学基金;
关键词
dynamic environment; semantic information; SLAM; ORB-SLAM3; TRACKING;
D O I
10.3390/app15084446
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Common visual simultaneous localization and mapping systems are built on the static environment hypothesis and fail to handle the substantial environmental dynamics. Particularly in highly dynamic environments, the pose estimation errors tend to accumulate rapidly, even causing the system to fail. To mitigate this limitation, we have developed DI-SLAM, an enhanced real-time SLAM system for dynamic indoor environments, extending the capabilities of ORB-SLAM3. DI-SLAM introduces a new parallel object detection thread, which employs an enhanced Yolov5s to extract semantic information in every input frame, enabling the filtering of dynamic features for initial tracking and localization. Additionally, we integrate multi-view geometry to further discriminate dynamic feature information, thereby increasing the precision and robustness of localization systems. Finally, experiments were executed on the TUM RGB-D dataset to prove the performance of the proposed algorithm. The results demonstrate strong performance on most datasets, showing a 97.06% improvement in localization accuracy over the original ORB-SLAM3 algorithm in indoor dynamic environments.
引用
收藏
页数:16
相关论文
共 41 条
[1]  
Bai DD, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON REAL-TIME COMPUTING AND ROBOTICS (IEEE RCAR), P70, DOI 10.1109/RCAR.2016.7784003
[2]   Speeded-Up Robust Features (SURF) [J].
Bay, Herbert ;
Ess, Andreas ;
Tuytelaars, Tinne ;
Van Gool, Luc .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2008, 110 (03) :346-359
[3]   DynaSLAM II: Tightly-Coupled Multi-Object Tracking and SLAM [J].
Bescos, Berta ;
Campos, Carlos ;
Tardos, Juan D. ;
Neira, Jose .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (03) :5191-5198
[4]   DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes [J].
Bescos, Berta ;
Facil, Jose M. ;
Civera, Javier ;
Neira, Jose .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (04) :4076-4083
[5]  
Bibby C., 2007, Proc. Robot. Sci. Syst
[6]   ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial, and Multimap SLAM [J].
Campos, Carlos ;
Elvira, Richard ;
Gomez Rodriguez, Juan J. ;
Montiel, Jose M. M. ;
Tardos, Juan D. .
IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (06) :1874-1890
[7]   OTE-SLAM: An Object Tracking Enhanced Visual SLAM System for Dynamic Environments [J].
Chang, Yimeng ;
Hu, Jun ;
Xu, Shiyou .
SENSORS, 2023, 23 (18)
[8]  
Chen BF, 2008, 2008 PROCEEDINGS OF INFORMATION TECHNOLOGY AND ENVIRONMENTAL SYSTEM SCIENCES: ITESS 2008, VOL 3, P1024
[9]   SEG-SLAM: Dynamic Indoor RGB-D Visual SLAM Integrating Geometric and YOLOv5-Based Semantic Information [J].
Cong, Peichao ;
Li, Jiaxing ;
Liu, Junjie ;
Xiao, Yixuan ;
Zhang, Xin .
SENSORS, 2024, 24 (07)
[10]   RGB-D SLAM in Dynamic Environments Using Point Correlations [J].
Dai, Weichen ;
Zhang, Yu ;
Li, Ping ;
Fang, Zheng ;
Scherer, Sebastian .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (01) :373-389