Hydrophobically modified Cu-ZnO-Al2O3 catalyst for CO2 hydrogenation to methanol

被引:0
作者
Jiang, Xiuyun [1 ,2 ]
Ke, Jucang [1 ]
Li, Rui [3 ]
Huang, Hao [2 ]
Liu, Zhihao [2 ]
Feng, Haozhe [2 ]
Ma, Qingxiang [1 ]
Gao, Xinhua [1 ]
Liu, Guangbo [4 ]
Feng, Xiaobo [5 ]
Zhao, Tian-Sheng [1 ]
Tsubaki, Noritatsu [2 ]
机构
[1] Ningxia Univ, Coll Chem & Chem Engn, State Key Lab High Efficiency Coal Utilizat & Gree, Yinchuan 750021, Ningxia, Peoples R China
[2] Univ Toyama, Sch Engn, Dept Appl Chem, Gofuku 3190, Toyama 9308555, Japan
[3] Ningxia Univ, Anal & Testing Ctr, Yinchuan 750021, Ningxia, Peoples R China
[4] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Songlin Rd 189, Qingdao, Shandong, Peoples R China
[5] China Univ Min & Technol, Jiangsu Prov Engn Res Ctr Fine Utilizat Carbon Res, Xuzhou 221116, Jiangsu, Peoples R China
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2025年 / 13卷 / 03期
关键词
Hydrophobic; Cu-ZnO-Al; 2; O; 3; catalyst; CO; hydrogenation; Methanol; CO2; HYDROGENATION; PERFORMANCE; CHALLENGES; ADSORPTION; CONVERSION; ENERGY; TRENDS; STATE; ACID; GAS;
D O I
10.1016/j.jece.2025.116758
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Herein, the well-studied Cu-ZnO-Al2O3 methanol synthesis catalyst was functionalized by bridging triethoxy (octyl)silane (TEOOS) molecules to achieve a surface hydrophobic. Water droplet contact angle measurements confirmed the successful construction of the hydrophobic surface. Various characterization techniques, including XRD, SEM, TG, H2-TPR, CO2-TPD, and XPS, were systematically employed to elucidate the impact of the hydrophobic modification on the structure and catalytic performance of the catalyst in CO2 hydrogenation. The results showed that after the hydrophobic modification, the morphology and physical structure of the catalyst remained nearly unchanged, and it kinetically enhanced the methanol synthesis by repelling the produced water molecules. Moreover, the decoration of hydrophobic alkyl chains on Cu-ZnO-Al2O3 catalyst surface not only prevented the retention of by-product most water on its surface and protects the Cu0 species from over-oxidation but also stabilized surface Cu+ species during the reaction process. Activity evaluation results demonstrated that the hydrophobic Cu-ZnO-Al2O3 catalyst facilitated the enhancement of methanol yield and CO2 conversion.
引用
收藏
页数:9
相关论文
共 59 条
[1]   Catalytic strategies for CO2 hydrogenation to BTX and p-xylene: A sustainable approach towards carbon neutrality [J].
Ali, Babar ;
Arslan, Muhammad Tahir ;
Hussain, Ijaz ;
Abdulai, Yahuza Nantomah ;
Alhooshani, Khalid ;
Ganiyu, Saheed Adewale .
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (06)
[2]   Improved Cu- and Zn-based catalysts for CO2 hydrogenation to methanol [J].
Allam, Djaouida ;
Bennici, Simona ;
Limousy, Lionel ;
Hocine, Smain .
COMPTES RENDUS CHIMIE, 2019, 22 (2-3) :227-237
[3]   Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes [J].
Alvarez, Andrea ;
Bansode, Atul ;
Urakawa, Atsushi ;
Bavykina, Anastasiya V. ;
Wezendonk, Tim A. ;
Makkee, Michiel ;
Gascon, Jorge ;
Kapteijn, Freek .
CHEMICAL REVIEWS, 2017, 117 (14) :9804-9838
[4]   Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH [J].
Arena, Francesco ;
Italiano, Giuseppe ;
Barbera, Katia ;
Bordiga, Silvia ;
Bonura, Giuseppe ;
Spadaro, Lorenzo ;
Frusteri, Francesco .
APPLIED CATALYSIS A-GENERAL, 2008, 350 (01) :16-23
[5]   Recent innovation on heterogeneous ZnO-based catalysts for enhanced CO 2 hydrogenation [J].
Aziz, F. F. A. ;
Timmiati, S. N. ;
Jalil, A. A. ;
Rusdan, N. A. ;
Annuar, N. H. R. ;
Teh, L. P. .
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (03)
[6]   Asymmetric impact of fossil fuel and renewable energy consumption on economic growth: A nonlinear technique [J].
Baz, Khan ;
Cheng, Jinhua ;
Xu, Deyi ;
Abbas, Khizar ;
Ali, Imad ;
Ali, Hashmat ;
Fang, Chuandi .
ENERGY, 2021, 226
[7]   Heterogeneous Catalysis of CO2 Conversion to Methanol on Copper Surfaces [J].
Behrens, Malte .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (45) :12022-12024
[8]   Agricultural production and greenhouse gas emissions from world regions-The major trends over 40 years [J].
Bennetzen, Eskild H. ;
Smith, Pete ;
Porter, John R. .
GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS, 2016, 37 :43-55
[9]   Conversion of carbon dioxide to methanol: A comprehensive review [J].
Biswal, Trinath ;
Shadangi, Krushna Prasad ;
Sarangi, Prakash Kumar ;
Srivastava, Rajesh K. .
CHEMOSPHERE, 2022, 298
[10]   Methanol Synthesis from Industrial CO2 Sources: A Contribution to Chemical Energy Conversion [J].
Bukhtiyarova, Marina ;
Lunkenbein, Thomas ;
Kaehler, Kevin ;
Schloegl, Robert .
CATALYSIS LETTERS, 2017, 147 (02) :416-427