Synthesis of tungsten-doped MFI zeolite membranes with improved performance for CO2/N2 separation

被引:1
作者
Peng, Li [1 ]
Zhao, Li [1 ]
Pan, Guang [1 ]
Gu, Xuehong [1 ]
机构
[1] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 211816, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; capture; MFI zeolite membrane; Tungsten doping; CO2/N2; separation; Humid condition; CARBON CAPTURE; SILICA; N-2; ADSORPTION; DRY;
D O I
10.1016/j.memsci.2025.124185
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The separation of CO2 from N2 using MFI-type zeolite membranes relies on a mechanism dominated by adsorption and diffusion processes. In this investigation, we employed a tungsten (W) doping approach to elevate the CO2 separation selectivity of MFI zeolite membranes. Isothermal adsorption assessments demonstrated an elevated heat of adsorption (Qst) for CO2 and a reduced pore sizes after W doping, corroborating the enhanced CO2/N2 separation efficiency observed. Specifically, the W-doped MFI membrane exhibited a selectivity of 38.8 under dry conditions, a substantial improvement over the 8.7 selectivity achieved by the undoped Si-MFI membrane, while the CO2 permeance remained comparable (3.9 x 10-7 vs 4.5 x 10-7 mol m-2 s-1 & sdot;Pa-1). Furthermore, the incorporation of tungsten curtails the formation of silanol groups by stabilizing the zeolite framework via energetically favorable W-O-Si linkages. These linkages diminish silanol-related defects, typically prone to water adsorption, thereby enhancing the membrane's hydrophobicity. Consequently, the W-doped MFI membrane maintains a CO2/N2 selectivity of 29.5 and a CO2 permeance of 1.8 x 10-7mol m-2 s-1 & sdot;Pa-1 in the humid environments, outperforming most reported zeolite membranes and showing potential ability for practical post-combustion carbon capture applications.
引用
收藏
页数:12
相关论文
共 59 条
[1]   The liquid phase oxidation of styrene with tungsten modified silica as a catalyst [J].
Adam, Farook ;
Iqbal, Anwar .
CHEMICAL ENGINEERING JOURNAL, 2011, 171 (03) :1379-1386
[2]   Mitigating the anthropogenic global warming in the electric power industry [J].
Akorede, M. F. ;
Hizam, H. ;
Ab Kadir, M. Z. A. ;
Aris, I. ;
Buba, S. D. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (05) :2747-2761
[3]  
Ando Y., 1998, ICIM, V98, P124
[4]   CO2 separation from binary mixtures of CH4, N2, and H2 by using SSZ-13 zeolite membrane [J].
Aydani, Azam ;
Brunetti, Adele ;
Maghsoudi, Hafez ;
Barbieri, Giuseppe .
SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 256
[5]   Separation of CO2/N2 mixtures using MFI-type zeolite membranes [J].
Bernal, MP ;
Coronas, J ;
Menéndez, M ;
Santamaría, J .
AICHE JOURNAL, 2004, 50 (01) :127-135
[6]   Post-combustion carbon capture [J].
Chao, Cong ;
Deng, Yimin ;
Dewil, Raf ;
Baeyens, Jan ;
Fan, Xianfeng .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 138
[7]   Novel synthesis of FAU-type zeolite membrane with high performance [J].
Cheng, ZL ;
Gao, EQ ;
Wan, HL .
CHEMICAL COMMUNICATIONS, 2004, (15) :1718-1719
[8]   Synthesis and characterization of nanocomposite B-MFI-alumina hollow fibre membranes and application to xylene isomer separation [J].
Deng, Z. ;
Nicolas, C. -H. ;
Guo, Y. ;
Giroir-Fendler, A. ;
Pera-Titus, M. .
MICROPOROUS AND MESOPOROUS MATERIALS, 2010, 133 (1-3) :18-26
[9]   Carbon capture and conversion using metal-organic frameworks and MOF-based materials [J].
Ding, Meili ;
Flaig, Robinson W. ;
Jiang, Hai-Long ;
Yaghi, Omar M. .
CHEMICAL SOCIETY REVIEWS, 2019, 48 (10) :2783-2828
[10]  
Du NY, 2011, NAT MATER, V10, P372, DOI [10.1038/NMAT2989, 10.1038/nmat2989]