Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Network

被引:0
作者
Zhan, Haolin [1 ,2 ]
Fang, Qiyuan [1 ]
Liu, Jiawei [1 ]
Shi, Xiaoqi [2 ]
Chen, Xinyu [1 ]
Huang, Yuqing [2 ]
Chen, Zhong [2 ]
机构
[1] Hefei Univ Technol, Dept Biomed Engn, Anhui Prov Key Lab Measuring Theory & Precis Inst, Sch Instrument Sci & Optoelect Engn, Hefei 230009, Peoples R China
[2] Xiamen Univ, Dept Elect Sci, Fujian Prov Key Lab Plasma & Magnet Resonance, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
NMR spectroscopy; Artificial intelligence; Deep learning; Spectral denoising; Lightweight network; NMR-SPECTROSCOPY;
D O I
暂无
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nuclear magnetic resonance (NMR) spectroscopy serves as a robust non-invasive characterization technique for probing molecular structure and providing quantitative analysis, however, further NMR applications are generally confined by the low sensitivity performance, especially for heteronuclear experiments. Herein, we present a lightweight deep learning protocol for high-quality, reliable, and very fast noise reduction of NMR spectroscopy. Along with the lightweight network advantages and fast computational efficiency, this deep learning (DL) protocol effectively reduces noises and spurious signals, and recovers desired weak peaks almost entirely drown in severe noise, thus implementing considerable signal-to-noise ratio (SNR) improvement. Additionally, it enables the satisfactory spectral denoising in the frequency domain and allows one to distinguish real signals and noise artifacts using solely physics-driven synthetic NMR data learning. Besides, the trained lightweight network model is general for one-dimensional and multi-dimensional NMR spectroscopy, and can be exploited on diverse chemical samples. As a result, the deep learning method presented in this study holds potential applications in the fields of chemistry, biology, materials, life sciences, and among others.
引用
收藏
页数:8
相关论文
共 49 条
[1]   SABRE: Chemical kinetics and spin dynamics of the formation of hyperpolarization [J].
Barskiy, Danila A. ;
Knecht, Stephan ;
Yurkovskaya, Alexandra V. ;
Ivanov, Konstantin L. .
PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY, 2019, 114 :33-70
[2]   High-Quality Reconstruction for Laplace NMR Based on Deep Learning [J].
Chen, Bo ;
Wu, Liubin ;
Cui, Xiaohong ;
Lin, Enping ;
Cao, Shuohui ;
Zhan, Haolin ;
Huang, Yuqing ;
Yang, Yu ;
Chen, Zhong .
ANALYTICAL CHEMISTRY, 2023, 95 (31) :11596-11602
[3]   Magnetic Resonance Spectroscopy Deep Learning Denoising Using Few in Vivo Data [J].
Chen, Dicheng ;
Hu, Wanqi ;
Liu, Huiting ;
Zhou, Yirong ;
Qiu, Tianyu ;
Huang, Yihui ;
Wang, Zi ;
Lin, Meijin ;
Lin, Liangjie ;
Wu, Zhigang ;
Wang, Jiazheng ;
Chen, Hao ;
Chen, Xi ;
Yan, Gen ;
Guo, Di ;
Lin, Jianzhong ;
Qu, Xiaobo .
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2023, 9 :448-458
[4]   Structure and Catalytic Characterization of a Second Framework Al(IV) Site in Zeolite Catalysts Revealed by NMR at 35.2 T [J].
Chen, Kuizhi ;
Horstmeier, Sarah ;
Nguyen, Vy T. ;
Wang, Bin ;
Crossley, Steven P. ;
Tram Pham ;
Gan, Zhehong ;
Hung, Ivan ;
White, Jeffery L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (16) :7514-7523
[5]   Real-Time Nuclear Magnetic Resonance Detection of Fumarase Activity Using Parahydrogen-Hyperpolarized [1-13C]Fumarate [J].
Eills, James ;
Cavallari, Eleonora ;
Carrera, Carla ;
Budker, Dmitry ;
Aime, Silvio ;
Reineri, Francesca .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (51) :20209-20214
[6]  
Elliott S. J., 2021, Prog. Nucl. Magn. Reson. Spectrosc., P126
[7]   PCA denoising and Wiener deconvolution of 31P 3D CSI data to enhance effective SNR and improve point spread function [J].
Froeling, Martijn ;
Prompers, Jeanine J. ;
Klomp, Dennis W. J. ;
van der Velden, Tijl A. .
MAGNETIC RESONANCE IN MEDICINE, 2021, 85 (06) :2992-3009
[8]   NMR spectroscopy up to 35.2 T using a series-connected hybrid magnet [J].
Gan, Zhehong ;
Hung, Ivan ;
Wang, Xiaoling ;
Paulino, Joana ;
Wu, Gang ;
Litvak, Ilya M. ;
Gor'kov, Peter L. ;
Brey, William W. ;
Lendi, Pietro ;
Schiano, Jeffrey L. ;
Bird, Mark D. ;
Dixon, Lain R. ;
Toth, Jack ;
Boebinger, Gregory S. ;
Cross, Timothy A. .
JOURNAL OF MAGNETIC RESONANCE, 2017, 284 :125-136
[9]   Fluorine Pseudocontact Shifts Used for Characterizing the Protein-Ligand Interaction Mode in the Limit of NMR Intermediate Exchange [J].
Gao, Jia ;
Liang, E. ;
Ma, Rongsheng ;
Li, Fudong ;
Liu, Yixiang ;
Liu, Jiuyang ;
Jiang, Ling ;
Li, Conggang ;
Dai, Haiming ;
Wu, Jihui ;
Su, Xuncheng ;
He, Wei ;
Ruan, Ke .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (42) :12982-12986
[10]   The theory and practice of hyperpolarization in magnetic resonance using parahydrogen [J].
Green, Richard A. ;
Adams, Ralph W. ;
Duckett, Simon B. ;
Mewis, Ryan E. ;
Williamson, David C. ;
Green, Gary G. R. .
PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY, 2012, 67 :1-48